### Aerial Imaging and Lidar Point Cloud Fusion for Low-Order Stream Identification





Ethan J. Shavers<sup>1</sup>, Lawrence V. Stanislawski<sup>1</sup>

<sup>1</sup> U.S. Geological Survey, Center of Excellence for Geospatial Information Science, Email: eshvers@usgs.gov, Istan@usgs.gov

### + Outline

- Introduction
- Objectives and Challenges
- Methods
- Preliminary Results
- Conclusions and Future Work



# + Introduction

- Weighted Flow Accumulation model and NHD
- Identify matching and mismatching features in both datasets
- Coefficient of Line Correspondence (CLC) metric



UCGIS 2018 Symposium and CaGIS AutoCarto, Madison WI, May 22-24, 2018

### + Introduction

**USGS** *The National Map* 

Headwater Stream length as a percentage of total stream length



FIGURE 1. Headwater Stream Length, as a Proportion of Total Stream Length Within Each 8 Digit HUC Watershed, in the U.S., Excluding Alaska, as Computed Querying the NHD RAD v2.0 for Reaches That Have No Other Inflowing Streams at the 1:100,000 Scale. The NHD RAD v2.0 Does not Capture Streams Under 1 mile (i.e., 1.61 km) in Length.

(Nadeau and Rains, 2007)

UCGIS 2018 Symposium and CaGIS AutoCarto, Madison WI, May 22-24, 2018

# + Challenge and Objectives

#### Challenge

- Regular NHD validation and updating
- Low order stream modeling inaccuracy

#### Objectives

- Automate low-order stream identification in low topographic relief humid regions
- Identify conditions that allow for stream classification



**USGS** 

# Low topographic relief agricultural region

Panther Creek WS

Miles





#### NHD agreement with elevation-derived channels



7



---- Model match Panther Creek WS 2 Miles

**USGS** 

#### **Elevation-derived** channels: omissions

Model match Omit error

Miles





#### Elevation-derived channels: commission errors









#### **Elevation-derived** channels: commission errors

Model match Commit error Omit error

Panther Creek WS

Miles







Stream permanence





Panther Creek WS

Miles

0.2

Commit error
Omit error
Model match

#### 3 m DEM







Miles



Return intensity





Panther Creek WS

0.2 Miles

— Model match

#### Topographic Position Index









— Model match

#### Point drop out





#### NAIP analysis







<sup>0.25</sup> km





- Lidar derivatives: DEM (TPI and profile curvature), intensity, and density of returns
- NAIP: σ(blue)\* blue/ NIR (below)













| Panther Creek                              | intermittent                  | Perennial                   |  |
|--------------------------------------------|-------------------------------|-----------------------------|--|
| Match lines                                | 36.74                         | 40.67                       |  |
| Model lines                                | 22.02                         | 37.69                       |  |
|                                            | 59 %                          | 93 %                        |  |
|                                            |                               |                             |  |
|                                            |                               |                             |  |
| Forked Creek                               | intermittent                  | Perennial                   |  |
| Forked Creek<br>Match lines                | intermittent<br>22.11         | Perennial<br>37.43          |  |
| Forked Creek<br>Match lines<br>Model lines | intermittent<br>22.11<br>5.45 | Perennial<br>37.43<br>29.23 |  |





UCGIS 2018 Symposium and CaGIS AutoCarto, Madison WI, May 22-24, 2018

### + Conclusions and Future Work

- Lidar derivatives and NAIP data can be used to extract streams
- Classification as ratio of model match
- Ground-truthing
- Dynamic weighting may be required for automation





### + References

- Nadeau, T. and Rains, M. C. (2007), Hydrological Connectivity Between Headwater Streams and Downstream Waters: How Science Can Inform Policy. JAWRA Journal of the American Water Resources Association, 43: 118-133. doi:10.1111/j.1752-1688.2007.00010.x
- Stanislawski, L. V., Buttenfield, B. P., & Doumbouya, A. (2015). A rapid approach for automated comparison of independently derived stream networks. *Cartography And Geographic Information Science*, (5), 435.



### Thanks



UCGIS 2018 Symposium and CaGIS AutoCarto, Madison WI, May 22-24, 2018