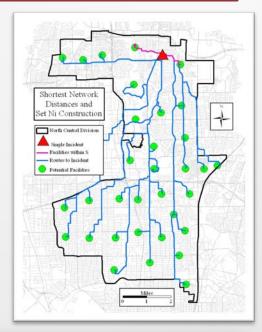


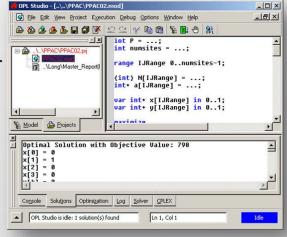
Unmanned Aerial Vehicle Logistics Modeling and Performance: A Demonstration of Integrative Data Science

UCGIS/AutoCarto Symposium 2018

P.I. Kevin M. Curtin, PhD http://locationscience.ua.edu kmcurtin@ua.edu

Partners and Contributors


- Important list of people who have contributed to this effort
 - Mike Resig
 - JK Robinson
 - Fred Woodaman
 - Jin Lee
 - Pat Guillen-Piazza
 - Group W Partners
 - Alec Barker
 - Mike Cosgrove
 - Peter Revay



Integrative Nature of Data Science

- The advance of data science as a discipline
 - Is a recognition that commonalities among scientific approaches, that
 - Offer the most fruitful ground for basic scientific advance
- The motivating mission of the Laboratory for Location Science is to integrate:
 - The theory, methods, tools, and techniques of Spatial Analysis
 - The theory, methods, tools, and techniques of Operations Research
- How can this integration solve problems that neither discipline can solve in isolation?

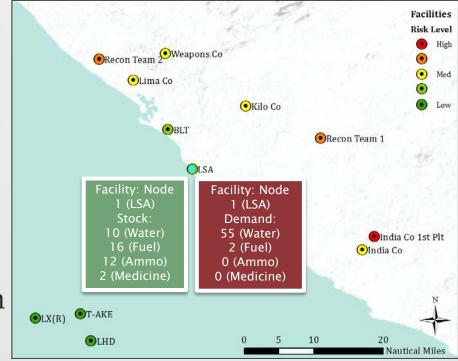
Applied to Logistics Operations with UAVs

- Interest from the Office of Naval Research
 - Logistics Branch
 - Not interested in UAVs for munitions
 - Not interested in UAVs for surveillance
 - Maybe a little...
 - Are interested in UAVs for delivery
 - Movement of supplies, equipment and personnel
 - To support operations
 - Platform Mix
 - Evaluate performance of platforms
 - At the operations level
 - Where to invest?

Why UAV Platform Mix?

- Marine operations are changing
 - Logistics has to change with them
- Move from:
 - "Storming the beach"
 - Building an "Iron Mountain"
- To:
 - Distributed logistics
 - From a sea base ships
 - Directly to units inland
- Want to move everything:
 - A Humvee
 - A single packet of food or medicine

What Platforms are in the Mix?

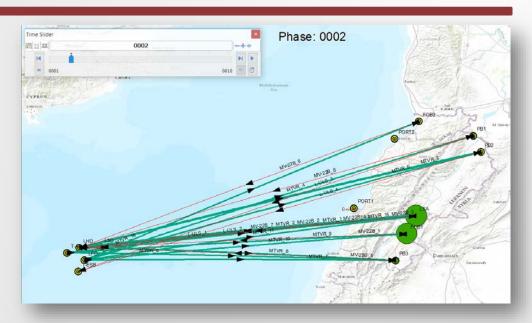

- Everything from:
 - Small Quadcopters
 - Many models...possibly in swarms
 - Up to 50 pound lift capacity
 - Medium lift up to 600 pound capacity
 - Quad-, Hex-, Octo-copters
 - Single rotor lift autogyro
 - Snowgoose
 - Large Lift
 - Manned Aircraft Converted to Pilotless/Autonomous
 - K-Max sling lift (6000 pounds)
- Employed the AUVSI Database to
 be able to test many platforms

What can the Spatial Analysis/GIS side do?

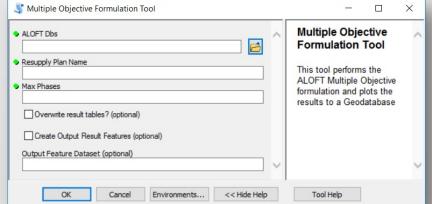
- Real-world Scenario Preparation
 - Database management
 - Platforms
 - Facilities
 - Supplies (Stocks)
 - Demands
 - Scenario Building/Visualization
- Computation of parameters necessary for the optimization process, e.g.
 - OD matrices
 - Network connectivity based on mode
- Means of Transfer to the OR side

What can the OR/Optimization Side Do?

- Formulate a model
 - That represents the multiple objectives of the logistics mission
 - Minimize prioritized unmet demand
 - Minimize risk to manned aircraft
 - Minimize operating costs
 - That models the constraints on:
 - Facilities
 - Platforms
 - Through space and time
- Provides the optimal
 - Deployment plan
 - Can be brought back to GIS

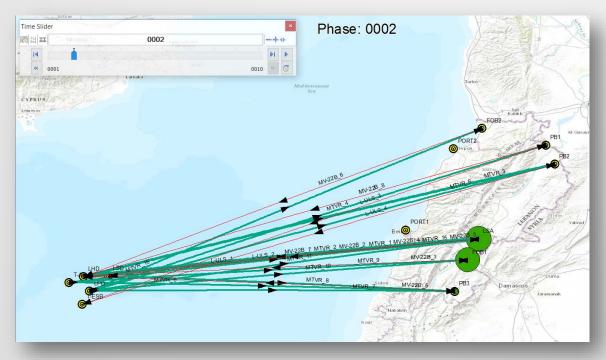

Obj 1. Minimize discounted, prioritized unmet demand $Min z = \sum_{t} discount_{t} \sum_{n} \sum_{i} utility_{n,i}SHORTED_{n,i,t}$ **Obj 2.** Minimize crew risk $Min z = \sum_{(t,t') \in timeArcs} \sum_{(n,n') \in nodeArcs} \sum_{v} crew_v nodeRisk_{v,n'}link_{v,n,n',t,t'}$ **Obj 3.** Minimize discounted, operating costs

 $Min \ z = \sum_{(t,t') \in timeArcs} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} discount_{t'} \sum_{(n,n') \in nodeArcs} \sum_{v \in t} operatingCostPerDistanceUnit_{v} ranges_{n,n'} link_{v,n,n',t,t'} discount_{t'} discount_{t'}$

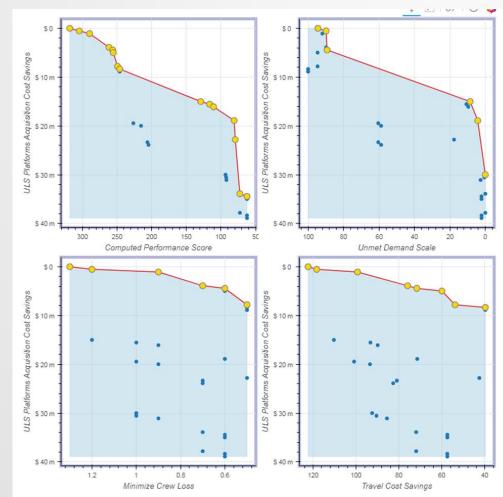


The ALOFT Testbed Environment

- Set of tightly integrated tools
 - OTS GIS Functionality
 - Custom GIS Scripting
 - Linkage to LP Solution software
 - Gurobi via Python/PuLP
 - Customized Display
 - Integration with Simulation

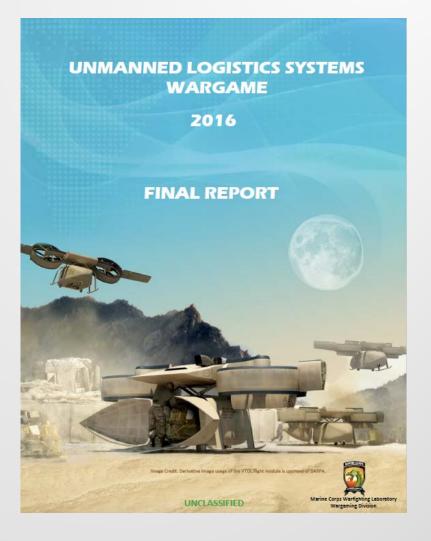

Scenario Excel Data		Load Excel Scenario
Scenario Geodatabase		This tool loads all necessary scenario data from data tables into the proper Geodatabase format for solving.
	~	~
OK Cancel Environments << Hid	de Help	Tool Help

What Does the Integration Buy Us?


- Logistics decision makers can build and modify spatially aware scenarios that they couldn't have with OR tools
- Optimal solution can be found with the LP solver which GIS can not provide
- Ability to visualize the solution provided valuable insight

Platform Mix Analysis

- In order to analyze platform mix we must change platform mix
 - Solve over a range of mixes
 - Multiplies the results
 - Dozens of scenarios
 - Dozens of platform mixes
 - Again a data science problem
- One way to begin is Pareto tradeoff analysis
 - Compare performance to cost
 - Pareto optimal boundaries
 - Determine non-dominated solutions


Conclusion and Paths Forward

- We believe we have demonstrated
 - The value of integrating GISci and Location Science/OR
- We know that we can:
 - Model logistics scenarios
 - Solve them optimally
 - Interpret the results, including performance measures
- What is next?
 - Extending scenarios, Random scenarios
 - Sensitivity of solutions
 - Find the bounds of tractability
 - Additional models where facility location changes but mix stays the same
 - Add statistical tests of significance to the Pareto Performance Analysis

Questions?

MCWL Scenario – Background

- The MCWL scenario is based on the United States Marine Corps (USMC) Installations and Logistics (I&L) Command's Unmanned Logistics Systems (ULS) 2016 wargame
 - The wargame was conducted at the unclassified level with a notional scenario set in 2025 and consisted of two vignettebased moves (Move I and Move II)
- This scenario is based on Move I, which focuses on logistics Classes
 I (food and water), III (fuel), and
 V (ammunition)

MCWL Scenario – Facilities

- This logistic supply system is a hub-and-spoke distribution model with the seabase serving as the initial hub
- The operation is set in the littoral environment of the coast of West Africa
- Manned and unmanned platforms are assigned to facilities for deliver goods
- Mode is a bitwise operator that specifies what kind of platforms (sea, air, land, amphibious) can access a facility

Facilities

Node	Name	Mode	X	Y	Platform			
1	LSA	12	-9.462485	5.322574	1 (S-ULS) 6 (M-ULS) 12 (MTVR)			
2	BLT	12	-9.520849	5.413603	-			
3	Kilo Co	12	द्र्यक् ट्ट्ट्र्ट्	5.469172	-			
4	Lima Co	12	घ् यक्र ज़ट,थट	5.528302	2 (S-ULS)			
5	Weapons Co	12	-9.527214	5.589981	-			
6	India Co	12	द्र्यक्र हड्ठ्यड्	5.135118	3 (S-ULS)			
7	India Co 1st Plt	12	-9.026156	5.1661	-			
8	Recon Team 1	12	द्रिय्ड्रह ठड़तढ	5.394503	-			
9	Recon Team 2	12	द्र्य्यस् तइत्थढ	5.577157	-			
10	LX(R)	8	इह्यज़ ट्रण् <u></u>	4.976472	1 (L-ULS)			
11	T-AKE	8	द्र्ध्य ण् ट्रज़्ज़्ट्टड़	4.986402	1 (L-ULS)			
12	LHD	10	ਦਵਿਆਜ਼ਰਨ ੀਤ	4.923426	3 (MV– 22B) 2 (CH– 53K)			
Platforms Supplies and Demands Map Optimal Solution								

MCWL Scenario – Platforms

- Unmanned and manned logistics vehicles are assigned based on the MCWL Move 1 Scenario
- Specifications and characteristics of each platform are listed below

Node	Name	Platform	Figure	Platform	Autonomy	
1	LSA	1 (S–ULS) 6 (M–ULS)		S-ULS	Unmanned	
	12 (MTVR)	12 (MTVR)		M-ULS	Unmanned	
4	Lima Co	2 (S-ULS)				
6	India Co	3 (S-ULS)		L-ULS	Unmanned	
10	LX(Rझ	1 (L–ULS)				
11	T-AKE	1 (L–ULS)		MV-22B	Manned	
12	LHD	3 (MV–22B) 2 (CH–53K)				
		2 (0.1 551()	A CONTRACT	CH-53K	Manned	

Name	Speed (nm/hr)	Capacity (Ibs)	Range (nm)	Acquisition Cost	Cost Per Hour	Cost Per Nautical Mile	Prob of Fail	Crew	Mode
S-ULS	32	50	13	90000	100	3	0.15	0	8
M-ULS	64	500	54	650000	300	5	0.1	0	8
L-ULS	230	5000	350	7500000	1550	8	0.075	0	8
MV-22B	248	20000	428	72614579	11000	44	0.025	3	8
CH-53K	156	27000	110	92796000	10000	64	0.025	4	8
MTVR	52	30000	260	195271	4000	77	0.05	3	4

Platf<u>orms</u>

Supplies and Demands

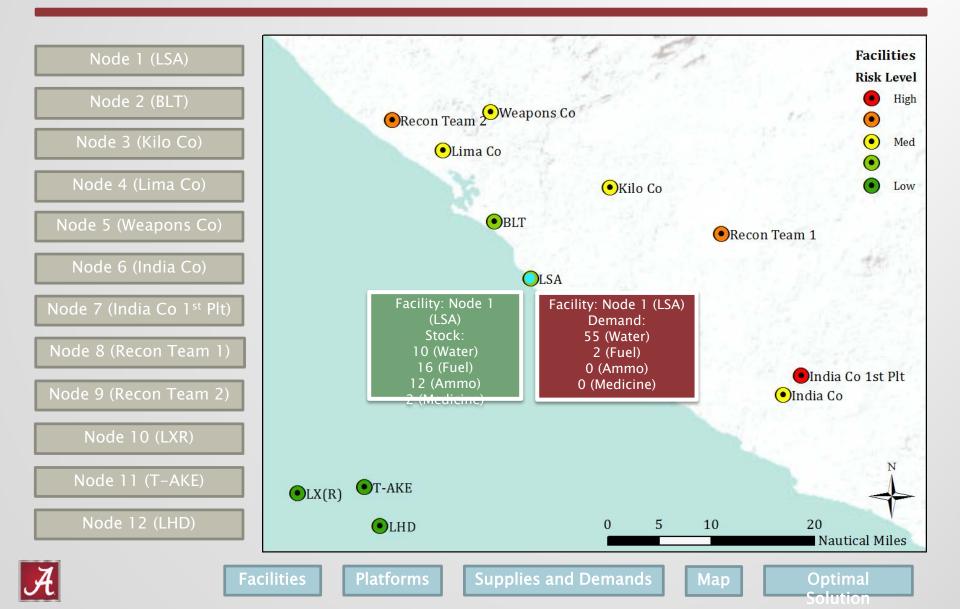
lap

MTVR

Manned

Optimal Solution

MCWL Scenario – Supplies and Demands


- Facilities in this scenario have either:
 - A stock of supplies to be delivered
 - A demand (need) for supplies
- The amounts of stocks and demands by facility are specified below:

Node	Name	Stock				Demand			
1	LSA	Water: 10	Fuel: 16	Ammo: 12	Medicine: 2	Water: 55	Fuel: 2	Ammo: 0	Medicine: 0
2	BLT	-	-	-	-	Water: 63	Fuel: 205	Ammo: 120	Medicine: 4
3	Kilo Co	-	-	-	-	Water: 10	Fuel: 0	Ammo: 3	Medicine: 1
4	Lima Co	-	-	-	-	Water: 10	Fuel: 0	Ammo: 3	Medicine: 1
5	Weapons Co	-	-	-	-	Water: 10	Fuel: 0	Ammo: 3	Medicine: 1
6	India Co	-	-	-	-	Water: 9	Fuel: 0	Ammo: 2	Medicine: 1
7	India Co 1st Plt	-	-	-	-	Water: 2	Fuel: 0	Ammo: 1	Medicine: 1
8	Recon Team 1	-	-	-	-	Water: 1	Fuel: 3	Ammo: 1	Medicine: 1
9	Recon Team 2	-	-	-	-	Water: 1	Fuel: 3	Ammo: 1	Medicine: 1
10	LX(R)	Water: 0	Fuel: 2,000	Ammo: 100	Medicine: 4	-	-	-	-
11	T-AKE	Water: 100	Fuel: 2,000	Ammo: 100	Medicine: 100	-	-	-	-
12	LHD	Water: 2,000	Fuel: 100	Ammo: 100	Medicine: 4	-	-	-	-

MCWL Overview – Map

