A spatial optimization problem for determining optimal locations for Bluetooth beacon placement

BRENT DELL, PH.D. STUDENT/UNDERGRADUATE INSTRUCTOR DR. MAY YUAN UNIVERSITY OF TEXAS AT DALLAS



### **INDOOR NAVIGATION**

One of the most requested applications of SmartCampus

### Network Creation/Routing

### Indoor Positioning





## Research Questions

Where are the optimal maximize coverage and minimize the number of beacons

How does RSSi relate to distance

### How many do we need?

Where do we place them?

#### Basic experiment

 Could see beacon signal (stable) through walls at 20 meters. 1 beacon, 2 beacons, others state that you need to see 3+ (similar to GPS)



Specs:

 ø BLE Location beacons
 ø 200 meters distance

 working about 70 meter
 ø 2.4 GHz

- $\sigma$  200ms Transmission interval
- Æ Estimote, Eddystone and iBeacon transmissions simultaneously

#### Lets do some math Minimum beacons needed to cover floor:

- Square footage of floor/Area of 20 meter circle around beacon
  - = 5,020.676/1256.64
    - = 3.995 beacons



Double count to get decent overlap

Set each to broadcast
Eddystone UID
10 dPm Strongth

+10 dBm Strength

### Case Study

Cecil B. Green Hall

**UT-Dallas** 



|                               |                                     | *                           | 🗸 🔒 22:00                         |                                    |
|-------------------------------|-------------------------------------|-----------------------------|-----------------------------------|------------------------------------|
| Beacon Sca                    | anner                               |                             | F :                               | See all prove ray<br>Frank the Law |
| - <b>77</b> dBm<br>Far        | TX<br>-58 dBm<br>Distance<br>4.05 m | Major                       | 70eb234a<br><sup>Minor</sup><br>1 |                                    |
| rssi<br><b>-78</b> dBm<br>Far | Distance                            | UUID<br>00000<br>Major<br>1 | 00000000<br><sup>Minor</sup><br>1 |                                    |
| rssi<br><b>-86</b> dBm<br>Far | TX<br>-58 dBm<br>Distance<br>8.48 m | Major                       | 70eb234a<br><sup>Minor</sup> 2    | Life<br>12:4                       |

 $\triangleleft$ 

0







### 147 Samples

# At doors and corners

- Left frame of door
- Back to frame
- Phone at chest height (4 ½ feet)

#### Recorded

- 10 second interval
- Data stored to CSV

Data processing in python

Calculate Distance from beacons to each point



# Considering Three Dimensions

#### Problem becomes much more complicated

#### Signal can be seen through floors, Although it is weaker

Beacons with unstable signal attenuate errors Beacons have unique IDs so triangulation algorithm can filter out.

# Compare RSSi & Distance



### Predicted vs Actual Distance



Predicted DIstance

### Mapping Errors



### Determining Threshold

Examine RMSE clusters for impacts from beacons

Local Moran's I (Cluster and Outlier Analysis)



| Cluster 1      | Canis | Sag   | Gem | Vir | Lynx     | Leo         | Pisces      | Orion |
|----------------|-------|-------|-----|-----|----------|-------------|-------------|-------|
| Mean           | 9.95  | 4.7   | n/a | n/a | 33.46429 | 7.957142857 | 4.528333333 | 3.8   |
| Std Dev        | 3.03  | 3.83  | n/a | n/a | 5.09     | 5.18        | 3.91        | 5.33  |
| Sum            | 79.63 | 37.81 | n/a | n/a | 234.25   | 55.7        | 27.17       | 30.51 |
| Count          | 8     | 8     | n/a | n/a | 7        | 7           | 6           | 8     |
|                |       |       |     |     |          |             |             |       |
| Highest RSSi's | -89   |       |     |     | -87      | -70         |             |       |

| Cluster 2      | Canis | Sag | Gem | Vir | Lynx  | Leo | Pisces | Orion   |
|----------------|-------|-----|-----|-----|-------|-----|--------|---------|
| Mean           | 5.23  | n/a | n/a | n/a | 13.03 | n/a | 5.05   | 23.8625 |
| Std Dev        | 4.74  | n/a | n/a | n/a | 3.17  | n/a | 2.98   | 1.97    |
| Sum            | 26.15 | n/a | n/a | n/a | 65.16 | n/a | 25.26  | 95.45   |
| Count          | 5     | n/a | n/a | n/a | 5     | n/a | 5      | 4       |
|                |       |     |     |     |       |     |        |         |
| Highest RSSi's | -74   |     |     |     | -89   |     | -88    | -93     |

# Cluster 1



# Cluster 2



#### **Beacon Location Estimator** Set Calculate Create Apply threshold Estimated Add **Buffers** underbasic number of to -60 beacons (10m geometric served to fill gaps (10 beacons radius) principles areas meters) **∂** python<sup>™</sup>

10 Meter Buffer (-60 RSSi threshold)

31 Beacons Total

All locations can see at least two beacons, sometimes three.





There is a complex relationship between distance and RSSi, including some environment factors that may not be fully understood

# We determine -60 as optimal RSSi for indoor positioning.

In a 3D environment, separate floor triangulation is preferred

# Future & Concurrent Research

Estimate signal reflection in hallways CISCO CMX Wireless Tracking

Photo based location matching

# Thanks for listening

For more information on progress as well as other projects, please visit: <u>https://gaia.utdallas.edu</u>

**DALLAS**Geospatial Analytics and Innovative Application Research Lab