A spatial optimization problem for determining optimal locations for Bluetooth beacon placement

 BRENTDEL,PH.D. SIUDENT/ UNDERG RA DUA TE INSTRUC TOR DR. MAY YUAN UNIVERSITY OF TEXAS ATDALLAS

INDOOR NAVIGATION

One of the most requested applications of

SmartCampus

Room: 2.326

Research Questions

Where are the optimal maximize coverage and minimize the number of beacons

How does RSSi relate to distance

- How many do we need?
- Where do we place them?

Basic experiment

- Could see beacon signal (sta ble) through walls at 20 meters.

1 beacon, 2 beacons, others state that you need to see 3+ (similar to GPS)

* Specs:
$\%$ BLE Location beacons \% 200 meters distance » Working about 70 meter
\% 2.4 GHz
\% 200 ms Transmission interval
\% Estimote, Eddystone and iBeacon transmissions simulta neously

Lets do some math
Minimum beac ons needed to cover floor:

- Square footage of floor/Area of 20 meter circle around beac on
- =5,020.676/1256.64
- = 3.995 beacons

Double count to get decent overlap

Set each to broadcast

- Eddystone UID
- +10 dBm Strength

147 Samples

At doors and comers

- Left frame of door
- Back to frame
- Phone at chest height ($41 / 2$ feet)

Recorded

- 10 second interval
- Data stored to CSV

Data processing in python

Calculate Distance from beaconsto each point

Considering Three Dimensions

Problem becomes much more complicated

Signal can be seen through floors, Although it is weaker

Beaconshave unique IDs so tria ngulation algorithm can filter out.

Compare RSSi \& Distance

All Yes Signals

Predicted vs Actual Dista nce

Mapping Errors

Determining Threshold

Examine RMSE clusters for impacts from beacons

Local Moran'sl (Cluster and Outlier Analysis)

Cluster 1	Canis	Sag	Gem	Vir	Lynx	leo	Pisces	Orion
Mean	9.95	4.7	n / a	n / a	33.46429	7.957142857	4.528333333	3.8
Stol Dev	3.03	3.83	n / a	n / a	5.09	5.18	3.91	5.33
Sum	79.63	37.81	n / a	n / a	234.25	55.7	27.17	30.51
Count	8	8	n / a	n / a	7	7	6	8
Highest RSSis	-89				-87	-70		

Cluster 2	Can's	Sag	Gem	Vir	Lynx	leo	Pisces	Orion
Mean	5.23	n / a	n / a	n / a	13.03	n / a	5.05	23.8625
Stod Dev	4.74	n / a	n / a	n / a	3.17	n / a	2.98	1.97
Sum	26.15	n / a	n / a	n / a	65.16	n / a	25.26	95.45
Count	5	n / a	n / a	n / a	5	n / a	5	4
								4
Highest RSSi's	-74				-89		-88	-93

Cluster 1

Cluster 2

Beacon Location Estimator

10 Meter Buffer (-60 RSSi

 threshold)31 Beacons Total
All locations can see at least two beacons, sometimes three.

Key Takea ways

There is a complex relationship between distance and RSSi, including some environment factors that may not be fully understood

We determine -60 a s optimal RSSi for indoor positioning.

In a 3D environment, separate floor triangulation is preferred

Future \& Concurrent Research

Estimate signal reflection in hallways

CISCO CMX Wireless Tracking

Photo based location matching

Tha nks for listening

For more information on progress as well as other projects, plea se visit: https:// gaia.utdallas.edu

SUTDALLAS \(\left\lvert\, \begin{aligned} \& Geospatial Analytics and Innovative
\& Application Research Lab\end{aligned}\right.\)

