Effects of Climate and Human Drivers on Surface Water Change

NC STATE UNIVERSITY

Mollie Gaines¹ and Mirela Tulbure^{1,2}

¹ Center for Geospatial Analytics, ² Department of Forestry and Environmental Resources

Introduction

- Inland water distribution is changing over time and space as climate and land use/land cover are changing [1], [2]
- Climate models project increased precipitation and intensity of hurricanes
 [3]
- Southeastern US: most land cover/use change and highest rate of population growth in the country [4]

Do human or climate factors more heavily impact changes in surface water detectable using satellite imagery?

Data

- Surface water Dynamic Surface Water Extent (DSWE) [5]
- Precipitation Gridded Surface Meteorological (GRIDMET) [6]
- Max. Temp. GRIDMET [6]
- Min. Temp. GRISMET [6]
- Agriculture land cover USDA Cropland Dataset (CDL) [7]
- Developed land cover CDL [7]
- Natural land cover CDL [7]
- Population LandScan [8]

Methods

Linear Mixed Effects Models

Fixed Effects:

Climate variables: standardized seasonal anomalies

Land Cover variables: percent land cover type

Population variables: population density

*each variable calculated per 8-digit Hydrologic Unit per season in 2018

Random Effects:

8-digit Hydrologic Unit

Model 1 – Climate Variables

Model 2 – Climate and Human Variables

Results

Conclusions

- Climate drivers alone do not explain a lot of the variance in surface water
- Adding human drivers increased the amount of variance explained by the fixed effects
- Warmer temperatures and higher precipitation lead to increases in surface water
- Natural land cover can limit runoff and reduce surface water

Human drivers more heavily impact the estimation of surface water

Future Work

- Expand temporal scale: only for 2018, but will be scaled up to 30 years
- Assess temporal trends: seasons and years will be nested grouping factors (random effects)
- Incorporate soil moisture data

References

- 1. M. G. Tulbure and M. Broich. "Spatiotemporal patterns and effects of climate and land use on surface water extent dynamics in a dryland region with three decades of Landsat satellite data." In: Sci. Total Environ. 658 (2019), pp. 1574–1585. doi: https://doi.org/10.1016/j.scitotenv.2018.11.390.
- 2. M.A. Palmer et al. "Climate change and the world's river basins: anticipating management options." In: Frontiers in Ecology and the Environment 6 (2008), pp. 81–89.
- 3. J.P. Kossin et al. "Extreme storms. In: Climate Science Special Report: Fourth National Climate Assessment." In: Volume I (2017), pp. 257–276. doi: 10.7930/J07S7KXX.
- 4. AJ Terando et al. "The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S." In: PLoS ONE 9 (2014). doi: 10.1371/journal.pone.0102261.
- 5. J.W. Jones. "Improved Automated Detection of Subpixel-Scale Inundation— Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests." In: Remote Sensing 11 (2019), p. 374.
- 6. Abatzoglou J. T. "Development of gridded surface meteorological data for ecological applications and modelling." In: International Journal of Climatology (2012). doi: https://doi.org/10.1002/joc. 3413.
- 7. USDA National Agricultural Statistics Service Cropland Data Layer. Washington, DC: Published cropspecific data layer [Online]. url: https://nassgeodata.gmu.edu/CropScape/.
- 8. A. N. Rose et al. LandScan 2018. Oak Ridge National Laboratory, 2019.