

Automatic Generation of Precisely Delineated Geographic Features from Georeferenced Historical Maps Using Deep Learning

Outline

- Problem Statement
- Background (existing work)
- Challenges of applying the existing work to our problem
- Existing models
- Preliminary Experiment Results
- Future Work
- Summary

Problem

Use Case: Identify soil pollution sources in the Past from Historical USGS Maps

Convolutional Neural Networks (CNN)

CNN have shown impressive performance in image recognition

Challenges

- Document images vs. Non-document images
 - image pixels representing a geographic feature of interest in a map document occupy only a small proportion of the entire image (imbalanced data)
 - the graphical representations of cartographic symbols belonging to different map layers can be very similar (the false positives)
- The loss of spatial resolution

Existing Work

- Introduce two state-of-the-art Deep Learning models for document image recognition
- Provide a basic understanding of the performance of Deep Learning models in digital map processing

Fully Convolutional Neural Network (FCN)

- Skip architecture
 - Combine the intermediate and final results.

Context Module (CM)

- Dilated Convolutional Layer
 - Enlarge the receptive fields
- Without pooling layers

Layer	1	2	3	4	5	6	7	8
Convolution kernel size	3*3*32	3*3*64	3*3*128	3*3*256	3*3*256	3*3*512	3*3*512	1*1*2
Dilation	1	1	2	4	8	16	1	1
Receptive field	3*3	5*5	9*9	17*17	33*33	65*65	67*67	67*67

Preliminary Experiment Results

- We tested on two geographic features in two maps
- We used correctness and completeness as metrics

	Bray		Louisville				
	Railroads		Waterlines		Railroads		
	Correctness	Completeness	Correctness	Completeness	Correctness	Completeness	
FCN	84.74%	97.46%	92.59%	98.01%	68.60%	96.64%	
Context	82.90%	97.86%	88.81%	98.26%	78.83%	96.73%	
Module							

- Overall, both models extracted railroad and waterline features reliably (i.e., high completeness)
- The receptive fields
 - Larger receptive fields (CM) are good for railroads
 - But not for water lines

Future Work

- Explore different architectures of models and loss functions for the map recognition (the imbalanced data)
- Design the architecture and loss functions for the map recognition
- Incorporate the topological and geometric characteristics of the features (e.g., railroads should be straight in some distance) to improve the recognition results

Summary

- Goal: convert information in maps into a machine-readable format
- The existing Convolutional Neural Networks show promising recognition results.
- In the future, we plan to design the CNN for map recognition.

Thank you!

Weiwei Duan weiweidu@usc.edu

Spatial Sciences Institute
University of Southern California