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Chapter 1: Purpose and Motivations

1.1 Introduction

What is spatial literacy and what is a spatial concept?

This little workbook provides a series of relatively simple, usually numerical or
computer-based, exercises that together illustrate some of the basic spatial
concepts whose mastery might be held to be a component of what has been
termed spatial literacy. The exercises themselves have been drawn from
experiences teaching geography at University level in a variety of institutions and
have in most cases been tried and tested many times. A few are newly minted to
fill some of the more obvious gaps in the coverage. In developing them | am
aware that for those of a modern cultural-geographic persuasion the exercise,
and the concerns to develop geography as ‘spatial science’ that they address, will
seem both naive and irrelevant to the discipline as they define it. To compound
this alleged sin the emphasis on numerical argument will also seem old-
fashioned and, through some guilt-by-association argument, ‘positivist’. I do not
accept either of these critiques. Following Gatrell (1983, page 7) / hope earnestly
that the book will not be seen simply as ‘spatial science’, since I think the path
charted here shows us that a concern for space transcends the artificial
partitioning of geography into distinct research traditions and ultimately the
artificial separation of disciplines in science.

Work by psychologists (summarized in Golledge, 2002, page 3-4) seems to
indicate that ‘geographers’ do ‘think differently’ from other academics, and
suggests that this difference is characterized by an ability to reason about space
and to represent its complexities graphically (mostly but not entirely by maps) in
ways that are not matched elsewhere by any other discipline. | suggest that
increasingly there is a need to include within the term ‘geographer’ not just those
who have had the benefit of some instruction in the academic discipline, but also
all those, scientists and the general public, who now routinely acquire and use
spatial information through media such as GPS, GIS, satellite navigation systems,
location based services, on-line mapping systems, virtual globes and even
location-based games such as ‘geocaching’. All of these activities require
individuals to demonstrate some measure of spatial literacy, which can be
defined as the ability to think and act in any context that requires the recognition
that location in space is important.

Within this, spatial thinking has itself been defined by a group established by the
(US) National Research Council (2006, page 12) as a collection of cognitive skills



comprised of knowing concepts of space, using tools of representation, and
reasoning processes. These three abilities — knowing spatial concepts,
representing them and reasoning from and about them - are not the same as
what, in his Presidential Address to the Association of American Geographers,
Golledge (2002) refers to as knowledge of space, which is the accumulation of
facts about the spatial arrangement and interactions comprising human-
environment relations. Rather it is knowledge about space, the recognition and
elaboration of the relations among geographic primitives and advanced concepts
derived from these primitives (such as arrangement, organization, distribution,
pattern, shape, hierarchy, distance, direction, orientation, regionalization,
categorization, reference frame, geographic association and so on) and their
formal linking into theories and generalizations (Golledge, 2002, 1). Self-
evidently, other disciplines make use of spatial concepts; a ‘geographical’
perspective on them is not the only one that could be taken. In what follows I
have taken it largely on the grounds of convenience and familiarity, making no
claims that the exercises I present and the concepts they explore have any wider
utility.

All this is fine, but it begs a very serious question, which is the identification of
the spatial concepts, representations and styles of reasoning that are in some
sense uniquely ‘geographic’. As a discipline in the UK we have not done well in
this respect, but I doubt that this difficulty is at all unusual in any science. For
example, the revised 2003 Quality Assurance Agency for Higher Education’s
Benchmark Statement for Geography (QAA, 2007) provides a long list of qualities
that make up what the panel (of which the author was a member) considered to
constitute ‘geographical understanding’. The list includes terms such as ‘spatial
variation’, ‘scale’, ‘difference’ and ‘representation’ but at no point are these terms
defined. Given the highly ‘political’, contested nature of the task, and the need
felt by the panel to incorporate at times very diverse views on the nature of
academic geography, this is perhaps hardly surprising. As will be seen, this
neglect in the UK contrasts markedly with concerns in the USA to develop both
curricula and resources that in some sense promote spatial thinking (Beard et al.,
2008).

Any list is likely to be partial, incomplete, and highly contingent in time, but it
further seems to me that, if as a discipline we claim to have some unique way of
looking at the world, we owe it to our students and the general public to make
some effort to say what this involves. Such an exercise can be justified for its
own sake as an intellectual challenge, but, more practically, it can also be seen
as an essential part of any development of curriculum that has educational aims
related to spatial thinking. My view is that a clear identification and elaboration
of the key spatial concepts is a necessary precursor to the development of
curricula and materials. At best it might help; at worst it can do no harm.



Four past attempts are worthy of discussion. First, in the early days of
geography’s so-called ‘quantitative revolution’, John Nystuen published a short
paper with the title Identification of some fundamental spatial concepts
(Nystuen, 1963). This paper remains a landmark, not so much for its
conclusions, but for the underlying and frequently misunderstood objective. This
was not to provide a list of all the spatial concepts that we might want to
include. His project was far more ambitious. Part of his first sentence reads: to
consider how many independent spatial concepts constitute a basis for the
spatial point of view ... and it goes on to talk about the complete minimum set of
concepts necessary to the spatial point of view of the geographer. Interestingly,
his claimed motivation for the exercise was to clarify (his) objectives in studying
geography and the main example he uses relates to a class being taught in a
mosque.

The three primitives to emerge from Nystuen'’s analysis were:

» Direction or orientation
» Distance
» Connection or relative position

with at least one extra ‘notion not considered’, which was
« Boundaries.

Nystuen then argued that given operational definitions these concepts represent
the axioms of the spatial view with other words, such as pattern, accessibility,
neighborhood, circulation, [etc] (are) compounds of these basic terms. In some
respects this attempt is similar to work in dimensional analysis in which, for a
given type of system, an attempt is made to define the minimum set of basic
dimensions of which the mass, length and time (MLT) set often used in physical
science is the best known. What is perhaps surprising about Nystuen’s list is that,
although site/situation and location/place are considered, his minimum set does
not include the notion of /ocation which is perhaps the most quintessentially
geographical concept of all.

A second attempt to list the essential spatial concepts is that by Golledge (2002)
in which he lists 19 ‘things’ that constitute a partial list of thinking and reasoning
processes that should help us determine what comprises Geographic Thinking
and Reasoning (note his use of capitals). According to Golledge, a spatially
literate person should be able to comprehend:

e Scale transformation;
» Transformation from one dimension to another;



« Superordinate and subordinate relations and frames of reference
(cardinal, relational, local, global);

e Spatial alignment;

» Distance effects;

» Spatial association;

» Orientation and direction;

» Regionalization/spatial classification;

e Clustering and dispersion;

» Spatial change and spread;

» Spatial and non-spatial hierarchy;

» Density and distance decay;

» Spatial shapes and patterns;

» Locations and places;

e Overlay and dissolve;

« Integration of geographic features (points, networks, regions);

» Spatial closure/interpolation;

« Proximity and adjacency;

e Spatial forms.

This list can be structured in at least two ways. First, borrowing from the US
National Research Council definition of spatial literacy, with some difficulty we
can recognize those that are primitive spatial concepts, those that involve
representation, and those that involve reasoning about space. Second, as
Golledge recognized, they can be structured into an hierarchy in which identity
and location (a ‘something’ ‘somewhere’) sit at the base and are then used to
derive *first order’/'simple spatial’ concepts such as ‘distance’ and ‘direction’, from
which can be derived ‘second order’/'complex spatial’ concepts such as
‘distribution” and ‘association’. The most complete attempt to do this that I know
of is that by Injeong Jo and Sarah Bednarz (Jo and Bednarz, 2009) in their
taxonomy of spatial thinking. This is summarized in Table 1.1, where in addition
I have attempted to group like concepts together.

Level Concepts
Non spatial concepts Identity/quality, magnitude/quantity
Primitives Place-specific identity, location
Simple-spatial Distance, direction

Connection and linkage
Movement, transition
Boundary, region, shape
Reference frame, alignment
Adjacency

Enclosure

Complex-spatial Distribution, pattern, dispersion,
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clustering, density

Diffusion

Dominance, hierarchy, network
Association

Overlay

Gradient, profile, relief

Scale

Projection

Buffer

Table 1.1: A hierarchy of non spatial and spatial concepts, based on Golledge
(2002) and Jo and Bednarz (2009)

At the base of the hierarchy of spatial concepts is the primitive notion of a
location, or, more properly, a set of locations and it is this notion that seems to
me to be the most fundamental of all, since we can build from it most, if not all,
of the remaining concepts in the list.

A third and more recent list of spatial concepts is that by Janelle (undated, see
also Janelle and Goodchild (2009)) in his essay on Spatial concepts and spatial
reasoning in the social sciences: an agenda for undergraduate education and in
what the context makes clear is not intended to be either a complete or even a
minimal set, he lists the following eight concepts, noting that

These concepts are demonstrable at all levels of space and time (from sub-
atomic to galactic, past through future, and microseconds to ions). They can be
rendered understandable through simple illustrations to young children but they
are also sufficiently engaging at advanced levels for thinking about scientific and
social problems.

« Location --Understanding formal and informal methods of specifying
"where";
Distance -- The ability to reason from knowledge of relative position;
« Network -- Understanding the importance of connections;
Neighborhood and Region -- Drawing inferences from spatial context;
« Scale -- Understanding spatial scale and its significance;
Spatial Heterogeneity -- The implications of spatial variability;
Spatial Dependence -- Understanding relationships across space;
Objects and Fields -- Viewing phenomena as continuous in space-
time or as discrete objects.

The website http://www.spatial.ucsb.edu refers to these as the eight foundational
spatial concepts.
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http://www.spatial.ucsb.edu/
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#objects#objects
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#dependence#dependence
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#heterogeneity#heterogeneity
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#scale#scale
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#neighborhood#neighborhood
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#network#network
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#distance#distance
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#location#location

Finally, the team at UCSB that created the website http://www.teachspatial.org
have taken an interesting empirical approach by examining the contents of some 20
sources (as of August, 2009) from which they extracted some 189 ‘unique terms’
from over 300 references or ‘assertions’. A frequency analysis shows that the
emphasis given to each term varies strongly with discipline, whether geography,
design, psychology, science education, linguistics, geosciences or social science, but
an examination of the graphics used to report these differences also shows
considerable agreement on some concepts. The 169 terms were classified by
‘category’ as shown in Table 1.2, but the rationale behind this categorization isn't
explained. Nonetheless, the website represents by far the most complete and
convenient analysis of the fundamental concepts of spatial thinking yet created.

Category

Explanation

Selected examples
of terms

General concepts

... concerning spatial and
spatiotemporal context

Space; place; field view;
object view; continuity ...

Primitives of identity

The existence, nature
and labeling of things
in the world

Object; attribute;
objects and fields ...

Spatial relationships

Comparative locations
of entities and their parts

Direction; location;
connection; distribution;
adjacency ...

Measurement

... of objects and of
relationships and related
issues

Shape; distance;
gradient; area; volume ...

Spatial structures

... as observed, and derived
from measurement and

Boundary; network; path;
surface; region ...

analysis
Dynamics Distinctly spatiotemporal Spatial interaction;
concepts diffusion; motion; force; frequency ...
Representation External tools and Map; perspective; map projection;
mental processes point; line; polygon; grid;
coordinate system ...
Transformations ... on data Scale; spatial interpolation; overlay;

buffer ...

Spatial inference

Products of analysis
and conclusions drawn

Spatial dependence;
spatial heterogeneity;
distance decay;

areal association ...

Table 1.2: Fundamental concepts of spatial thinking by category (after
http://www.teachspatial.org/fundamental-concepts-spatial-thinking)
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http://www.teachspatial.org/

It seems to me that each of these past attempts includes elements that any
schema should have but that all lack a consistent framework into which the
concepts can be placed. Several attempts to do this, such as those by Golledge
(2002) and Jo and Bednarz (2009) are shown graphically at
http://www.teachspatial.org/schemas where they are referred to as schemas.
Figure 1.1, due to Karl Grossner at UCSB, is taken from the website and shows
how spatial concepts can be mapped onto the NRC elements of spatial thinking.

Figure 1.1: Karl Grossner’s schema for spatial concepts (taken from
http://www.teachspatial.org/nrc-elements-spatial-thinking)

Developing a schema

It should be apparent that there are many ways by which such schemas can be
developed, with different views being appropriate for different purposes. In
what follows I develop a schema that helps clarify educational aims and intended
learning outcomes that are appropriate for this workbook but that at the same
time enables a ‘mapping’ into familiar ideas from the conventional geographic
information science. The schema uses three organizing notions:

« A definition and view of ‘distance’ as a relation between primitives
called ‘locations’ based on the work of Gatrell (1983);
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http://www.teachspatial.org/schemas

» The familiar geometric classification of entities into points, lines,
areas and fields; and
» Gollege’s idea of a hierarchy of levels.

Towards a schema for spatial concepts (1): the relational view

Following the excellent little book by Gatrell (1983, Chapter 2), this can be
explained using set theoretic concepts. A set is any well-defined collection of’
‘objects’, for example the set of F1 racing car teams that can be denoted:

F = {Brawn, Red Bull, Ferrari, BMW, ... etc}

Note that we can define the elements of this set easily and unambiguously, but
more serious problems might occur if we were to attempt to define, say, the set
of all motor car manufacturers, where ambiguity might arise because the set
itself is ‘fuzzy’ (what is a ‘car’?). Gatrell’s book elaborates on this and provides
numerous examples, but for a set to be uniquely ‘geographic’ it seems to me that
it must consist of a collection of /ocations, for example:

T = {the set of cities in UK}

B = {the set of offices belonging to the CBD of a city}
M = {the set of mountain tops over 1000m in UK}

C = {the set of English counties}

Note that this implies that we can recognize and identify the entities we call
‘cities’, ‘offices’ and ‘counties’ but in themselves these are non-spatial concepts,
simply ‘somethings’ that would occupy the first row of Table 1. Getting them
onto the second row implies that we can add to this ‘something’ a ‘somewhere’
that creates a set of locations. Once defined, our locational sets allow us to build
our geographies of interest by using the idea of a relation on a set.

With a set, G, consisting of, say, n elements can be defined its Cartesian product
C X Cas another set of all the ordered pairs {¢.c, ¢,6, ..., GG}. Such a set can
be visualized as a square matrix with n rows and n columns and has 7 elements.
A relation on the set is any subset of the Cartesian product set and can be
defined in numerous ways. Let us take a simple example. Suppose that we are
dealing with the set

C = {the set of English counties}
This is a set of locations. Its Cartesian product gives an ordered list of all
possible pairs of counties of which two elements are, for example, (Derbyshire,

Yorkshire) and (Derbyshire, Essex). If the relation that we are interested in it
that of adjacency, coded ‘1’ if the two counties are adjacent (i.e. they share a
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common boundary) and ‘0’ if they are not, then we can replace the adjacent pair
of counties (Derbyshire, Yorkshire) with a ‘1" and the pair (Derbyshire, Essex)
that are not adjacent by a ‘0’. Notice that in this case we would almost certainly
disallow a county from being adjacent to itself, making the relation irreflexive,
and that in this example the relationship is symmetric, since (Yorkshire,
Derbyshire) must also have the value ‘1'. Gatrell (1983, pages 15-24) provides
further geographical examples.

Why is this important? The next step in Gatrell’s argument is critical. In our
example we used adjacency as an appropriate relationship between the set of
areas that make up the counties of England. We could just as easily use some
measure of their separation in space, making the chosen relation a ‘distance’.
Operationally, this ‘distance’ could be measured in any of a number of ways, for
example from the nearest points on the county boundaries, from some centroids
in each county, or by the time taken to drive from one county to the other.
Viewed in his way, the adjacency relation we used in the example is also a
measure of geographical ‘distance’; as Gatrell observes there are many possible
concepts of distance best summarized in the quotation he gives from the well-
known columnist Katherine Whitehorn writing in the Observer newspaper many
years ago (21* December 1980):

'How far is it to Bethlehem? Not very far, we used to pipe as children. Depends
on your point of view, if you ask me. How many shopping days to Christmas,
how long is a piece of time and whether Bethlehem is £90, five hours flying
time or just a prayer away is entirely a matter of opinion’

Perhaps the most straightforward ‘distance’” we can recognize is the Euclidean
straight line in a metric space between any two point locations, /and j, each
defined by their (X, y) co-ordinates:

d; = \/(xi B xj)2 t (yf B yj)2
The essential point here is that the complete set of distances, perhaps
represented in matrix form as D, formed by the Cartesian product of the original
set of locations itself defines a ‘space’. Euclidean distances are the shortest paths
between the locations and have the underlying properties of non-negativity (no
dsis less than zero), reflexivity (the distance to a location from the same location
is 0), symmetry (d; = d;), and obey the so-called triangle inequality. This states
that the length of the longest side of the triangle is less than the sum of the
lengths of the two shorter sides. The space they define is a Euclidean plane,
which in turn is an example of a metric space. What follows from this is that
other types of location sets and other concepts of relation define other types of
both metric and non-metric spaces. Much of the rest of Gatrell’s book shows how
such spaces can be extracted from data on the relations between location sets
and then examined and visualized. An obvious and relatively straightforward
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example is where the scale of a study means that we have to consider the
earth’s curvature, such that or shortest path is now a Great Circle. Other metric
spaces are also possible as are spaces that are decidedly non-metric. Perhaps
the best known work exploring these spaces is that by Michael Worboys and his
collaborators (Worboys, 1996; 2001; Worboys, Mason and Lingham, 1998;
Worboys, Duckham and Kulik, 2004). Many of the concepts applied to area and
networks (see below) relate primarily to spaces created by a ‘distance’ that is
simply an adjacency or link, so the space is essentially that of a lattice or
network.

These non-Euclidean spaces are important because they often are those in which
people think and act in ways that require the recognition that location in some
space is important. In other words they are a key component of spatial literacy,
and analysis using them provides a way into what, following the naive physics
manifesto of Patrick Hayes (1978), Egenhofer and Mark (1995) outlined as its
naive geography equivalent. To see this link and give an idea of the flavour of
their proposal, it is worth listing the admittedly incomplete list of fourteen
elements of naive geography they recognize:

» Naive geographic space is two-dimensional;

* The earth is flat;

» Maps are more real than experience;

» Geographic entities are ontologically different from enlarged table-
top objects;

» Geographic space and time are tightly coupled;

» Geographic information is frequently incomplete;

» People use multiple conceptualizations of geographic space;

» Geographic space has multiple levels of detail;

« Boundaries are sometimes entities, sometimes not;

« Topology matters, metric refines;

» People have biases toward north-south and east-west directions;

» Distances are asymmetric;

» Distance inferences are local, not global;

« Distances don't add up easily.

This list makes it clear that analysis in spaces other than the simple Euclidean is
not and will not be easy, and in some sense standard representations of space in
GIS software and by conventional mapping do not help this. Notable exceptions
are the work by Worboys and his colleagues cited above, work modifying
standard spatial analytical methods for use across a network representation, and
work using cartograms and related devices.

Towards a schema for spatial concepts (2): the geometric view
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The development thus far has led to the notion of sets of geographical primitives
we call locations, together with the idea that the spaces to which the spatial
concepts refer are generated as some sort of ‘distance’ relation between
elements of a set of such locations.

This simple idea can be taken further by introducing the by-now familiar notion
that geographic entities can be represented and classified by their fundamental
dimension of length, L, into discrete objects called points (length dimension L°),
lines (L), areas (L?) and continuous, self-defining fields (L*). This classification
has been used many times in the literatures of cartography and spatial analysis
(see for example, Unwin, 1981). What becomes clear is that each geometry
carries with it a type of space within which in turn there is a set of possible
spatial concepts of interest.

Towards a schema for spatial concepts (3): hierarchies of concepts

So, we now have the idea of different geometric/geographic object types, each
generating a type of space within which different spatial concepts can be
recognized. The final step, following Golledge’s (2002) schema, is to recognize
within each type of space a division of concepts that are appropriate for thinking
about these spaces into primitive/first order, complex/second order and a lose
group that might be called analytical/ third order. This distinction between levels
is similar to that made by Golledge (see above), but it is not perhaps as easy to
make in practice as it might seem in theory.

At the base sit some primitive/first order notions. For example if the entity is a
point the appropriate primitives are its location in some reference
frame/projection and its magnitude. If it is a line object then its magnitude is
what we call ‘length’ but we also must add its direction/orientation. Similarly for
an area object the primitives are is its boundary and shape and for a field we
have its ‘height’ at some location.

Complex/second order concepts take these primitives and combine them in
some way to create new emergent concepts. Combinations of point objects
allow us to think about spatial concepts such as distribution, dispersion, and
pattern and bundles of line objects gives notions of linkage/connection into
networks. Collections of area objects provide us with notions of adjacency,
fragmentation, enclosure, pattern/ clustering (autocorrelation), hierarchy,
and dominance. When we deal with more than one sample ‘height’ of a
continuous field, second order concepts such as continuity, gradient, profile,
relief, and trend appear.

Finally, at the analytical/third order we have a series of concepts that emerge as
a consequence of some analysis such as point process models, the ideas of
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stationarity and anisotropy/isotropy as applied to point objects, shortest/least
cost paths and network generation models, areal association, spatial interaction
models and tessellations as related to area objects, and equivalent vector fields,
least ‘cost’ paths, and surface networks derived from fields. In a GIS
environment many of the standard operations entail some form of association or
transformation between objects of different spatial dimension. Examples include
point in polygon determination (points and areas), overlay (two sets of area
objects), density estimation (point to field), buffering (point line or area to area),
and so on. Whether these operations should be included as ‘concepts’ is perhaps
moot.

The complete schema is shown as Table 1.3.

Nature of Relation Space Appropriate

Element Concepts

Point objects Distance Metric (especially Primitive/First
Euclidean) order

location, magnitude
reference frame,
projection
Complex/Second
order

distribution,
dispersion, pattern,
clustering, density.
Analytical/Third
order

Point process models,
stationarity,
anisotropy/isotropy

Line objects Connection Network Primitive/First
order

length, direction
Complex/Second
order
linkage/connection,
Analytical/Third
Order

network generation
models
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Area objects Contiguity/proximity Lattice Primitive/First

order

boundary, area,
shape, region,
Complex/Second
order

adjacency,
fragmentation,
enclosure, pattern/
clustering
(autocorrelation),
hierarchy, dominance,
scale

Analytical /Third
Order

models of areal
association, spatial
interaction

Distance and Euclidean metric Primitive/First
magnitude order

height
Complex/Second
order

continuity, gradient,
profile, relief
Analytical /Third
order

vector fields, trend,
surface networks,
semi-variogram

Table 1.3: Elements, relations, spaces and spatial concepts.

Evidently and perhaps obviously, several of the concepts, notably pattern occur

more than once in the table and, perhaps significantly, the only three concepts in
Golledge’s list that do not appear are association, which is essentially non-spatial,
and movement/transition and diffusion which involve some notion of temporality.

1.2 Educational Challenges and structure

It is one thing to list and categorize these concepts, quite another to identify
appropriate intended learning outcomes (ILO) for them, and to develop
approaches and resources that might facilitate students in some sense ‘learning’
them. In part this may simply be that in the past we have not tried very hard to
focus on them in our teaching but it is perhaps also related to their somewhat
abstract nature. There is no single ‘correct’ or even optimal way to navigate
through the entries in this table, since much will depend on the overall aims of
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any curriculum that makes use of it. Table 1.4 summarises the offerings in this
Workbook and can be used to suggest some possible route ways through them.

No | Exercise Geometry | Space Order
1 Location - where do you live, andPoint, line All Primitive
what do you live in or on? Area, even
field
2 Scale and representation Point, line, | All Primitive (?)
area and
field
3 Adjacency and relations Area Lattice/ Complex
between elements of a set Adjacency
4 Conceptions of distance Line Metric Complex
5 Some complications with ‘distancédjacency Metric Complex
and non-Metric
6 Projection and location Points, lines gnMdetric Primitive
areas
7 Transforming locations Points Euclidean/ | Primitive
Metric
8 Dotting the map Points Euclidean/ | Complex
Metric
9 Drawing your own pin map Points Euclidean/ | Complex
Metric
10 Proportionate symbol maps Points Euclidean/ | Complex
Metric
11 Centrography Points Euclidean/ | Complex
Metric
12 Nearest neighbor statistics Points Euclidean/ | Complex &
Metric Analytical
13 Ripley’s K statistic Points Euclidean/ | Complex &
Metric Analytical
14 Lines on maps Lines Metric Primitive
15 Measuring length Lines Metric Primitive
16 | Fractals Lines Metric Primitive &
analytical
17 Direction Lines Metric Primitive
18 | Analyzing tree networks Lines Network Complex
19 | Analyzing networks Lines Network Complex
20 Types of areas on maps Areas Lattice Primitive
21 | Colour maps for area objects Areas Lattice Primitive
22 | Choropleth maps for area Areas Lattice Primitive
objects
23 Measuring area Areas Euclidean/ | Primitive
Metric
24 What do we mean by Areas Euclidean/ | Primitive
‘shape’? Metric
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25 Mapping area data using Areas Lattice Primitive
OpenGeoDa™
26 Using OpenGeoDa™ to Areas Lattice/ Complex
compute a spatial weights adjacency
matrix
27 | Spatial autocorrelation and pattérAreas Lattice/ Complex
adjacency
28 | Global spatial autocorrelation usjnreas Lattice/ Complex
OpenGeoDa™ adjacency
29 | Continuity and isolining Field Euclidean/ | Complex/
a field Metric second order
30 Isolining by machine Field Euclidean/ | Complex/
Metric second order
31 Visualizing fields Field Euclidean/ | Complex/
Metric second order
32 Trends in fields Field Euclidean/ | Complex/
Metric second order
33 Spatial structure and spatial Field Euclidean/ | Complex/
interpolation by kriging Metric second order
& analytical/
third order
34 Spatial structure from the Field Euclidean/ | Analytical/
semi-variogram model Metric third order

Table 1.4: The workbook exercises classified by geometry, space and hierarchical level.

One might order a curriculum much as in this workbook, using the geometry
employed from ‘points’ through ‘lines’ and ‘areas’ to *fields’, treating the nature of
the space and the hierarchical level as secondary. This has the merit of simplicity
and has been used many times by textbook authors covering these and similar
materials. More ambitious approaches might be tempted to use the nature of the
spaces progressing from simple adjacency lattices through networks to metric and
Euclidean spaces. A third approach would be to work from primitive/first order
concepts through complex/second order ones to those that involve analysis at the
third order. A moment’s thought will indicate that it would be a mistake to equate
these hierarchical levels with specific ages/levels in the educational system. As

Golledge. March and Battersby (2008, Table 10) recognize, many of these concepts
can and should be taught over a wide range of ‘levels’ in education from
kindergarten, through the US grade system and its equivalents elsewhere, to at least
Masters degree. Differentiation in this is possible by the choice of learning outcomes
appropriate to the level of the teaching and of the sort that constitute the greater
part of the UCGIS Body of Knowledge (DeMers, 2009).
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Spatial concepts can be listed and taught in the lecture theatre, but, consistent
with a constructivist stance to learning, my view is that they are best introduced
to students through simple, illustrative practical exercises in which they are
operationalized with real data:

Tell me, I forget
Show me, I remember
Involve me, I understand

This view is to an extent counter to much practice in the discipline, which uses
the practical class as a vehicle for teaching skills associated with various methods
of investigation such as mapping, GIS, and statistical analysis. In their discussion
of the use of ‘practicals’ and projects in higher education in geography, Gold et
al. (1991, pages 36-58) note that confining use of active learning to teaching
techniques is a bad teaching strategy that is of relatively recent origin.
Traditional practical teaching at first followed the approach introduced into the
universities in the nineteenth century, when students were encouraged to repeat
many of the classic experiments of science with a view primarily to
understanding the underlying concepts. Acquisition of the necessary technical
skills wasn't the main objective but rather it was a bonus that accrued from
following the experiments. If in a UK secondary school you followed a GCSE
course in either physics or chemistry you will be familiar with this approach. At
first, practical work in higher education in geography addressed similar objectives
well into the 1960s with what was considered at the time to be core substantive
materials such as cartography and land survey taught using the practical
method. Since then a whole raft of new approaches to knowledge acquisition
using statistical analysis, remote sensing, GIS and so on have been seen as
necessary skills that students should acquire and the ‘practical’ class has had its
emphasis changed from a method for teaching substantive geography to one
whose primary intended outcomes are associated with learning technical and
transferable skills. A similar change can also be seen in the use of the field class.
All this is not to argue against such teaching, but against the artificial separation
between teaching about techniques and teaching substantive geography; as is
attempted in this Workbook, ‘learning by doing’ can and should be applied over
the entire curriculum. Griffith (1987, 1992) would seem to agree.

What follows is a Workbook of educational materials that use simple numerical
exercises with ‘freeware’ software systems to explore some of the fundamental
spatial concepts identified in Section 1.1. Some are very short, more of the
nature of what elsewhere are called ‘thought exercises’ (O’Sullivan and Unwin,
2010, page 5) in which students are asked to think through something and then
reflect on what this illustrates. Others ask students to use the vast information
source that is the World Wide Web (WWW) to find some illustrative materials.
From this it is a short step to exercises that use specific software and data to
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address and illustrate particular concepts. Where relevant sample data are
suggested and should be readily available from standard WWW sources.

That most involve the use of ‘the steel bars of numbers’ to illustrate the concepts
is deliberate and it explains the title ‘Numbers aren’t nasty’ I have chosen for this
Workbook. Regrettably, many in contemporary academic geography seem to
think that numbers are nasty, with all sorts of associated guilt , not least of
which are a lack of imagination and a false association with some caricature the
people concerned have in their minds of ‘positivism’.

Although most of the exercises have been ‘road tested’, sometimes many times,
some are untested, created to give some sort of continuity to this workbook.
Whether ‘tried and tested’ or new, instructors will almost certainly need to adapt
them to address different intended learning outcomes or meet local
circumstances and, as with any purchased goods, caveat emptor applies. In
particular the suggested student briefings are only indicative of what might be
used. No guidance or suggestions are made for how these materials might be
used in specific curriculums or at what level. Any instructor, and hopefully there
will be some, wishing to incorporate any of these materials into their teaching
will be perfectly capable of assessing when and how best to use them. Although
the Workbook covers a range of spatial concepts, there are some obvious gaps.

Each exercise has been structured in the same way, with a standard format that
contains:

Aims and introduction
Geometry, space and level
Intended learning outcomes
Resources needed
Suggested student briefing
Comment/answers
Suggestions for modification
References

NounhrNO=

In this (1) outlines which of the spatial concepts are addressed by the exercise,
(2) provides a key to where the exercise fits in the schema developed in this
Chapter. Very importantly (3) narrows down the aims in (1) to some specific
learning outcomes. (4) lists the necessary resources whilst (5) contains a
suggested student briefing. In this part I have tried hard to avoid text that reads
like a simple sequence of operations (press this, type that etc) that lead to a
single desired outcome. Quite apart from the sheer boredom of assessing such
work and the opportunities for lazy students to plagiarize the work of others, I
fail to see what this type of briefing usually achieves. My preference is for what
in the past has been called ‘open-ending’, leading to different results, either
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through different pathways or through the use of different input information
(Unwin, 1980). I realize that not all the suggested exercises manage to do this
as effectively as I would have liked. Typically these latter examples are where
software such as CRIMESTAT III and OpenGeoDa™ are being used to calculate
values for some test statistic and the suggested briefing is a blow by blow
account of how to achieve the intended end product. My defence at the
accusation of an apparent inconsistency with the ideas expressed in Unwin
(1980) is that knowing what to do in such circumstances is pretty useless unless
one also knows how to do it. ‘Open-ended’ alternatives can easily be developed
once the work flow has been established. Finally, Sections (6) and (7) provide an
opportunity for reflection on what use of the exercise has shown. Readers — if
there are any — familiar with my texts published in 1981, 2003 and 2010 will
recognize the origins of some of these materials. I can only apologise if they
seem ‘old hat’ and express the hope that there is value in having them collected
under the same, more convenient, roof.

Chapter 2 deals with the spatial primitives of location, distance, space and
projection/reference frame together with the standard geometric classification of
objects. Chapter 3 provides exercises mostly based in the Crimestat III package
that explore second order concepts such as dispersion, density and pattern using
as it examples point located objects. Chapter 4 looks at line objects and the
associated concepts of length, direction and connection. Chapter 5 uses the
OpenGeoda™ package to examine concepts associated with area objects such as
fragmentation and pattern (autocorrelation). Chapter 6 provides a series of
exercises, some using 3Dfield ™, associated with self-defining continuous fields
such as continuity and trend. Finally, Chapter 7 gives a few pointers to where
additional supporting materials might be found.
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Chapter 2: Location, Spaces and Distance

2.1 Aims and introduction

Chapter 1 outlined a schema for spatial concepts leading to the notion that for
point objects the appropriate relation is a distance, usually, but not always in a
Euclidean metric space. First order concepts in such a space are location,
magnitude and the reference frame and projection. In this chapter we develop
student’s appreciation of the *first order’ basic spatial concepts of /ocation, scale,
adjacency, distance, and projection as well as the variety of ways by which they
can be ‘measured’ in different ‘spaces’.

2.2 Exercise (1): Location - where do you live, and what do
you live in or on?

Aims and introduction

This is a simple, almost trivial, thought exercise that addresses the variety of
ways by which we locate objects but it leads into such interesting and potentially
rich discussion. I have used it many times as an ice-breaker at the start of
courses in geographic information science.

Geometry, space and level

With luck responses will use each of the geometries we recognize (point, line and
area for certain, possibly even field) and so the idea that how we specify our
location can generate different types of space. The notion lies at the base of our
hierarchy as primitive/first order.

Intended learning outcomes
After doing this exercise, students will:

» Be able to list many ways by which we locate ourselves and objects;

« Understand that different approaches are used for different
purposes;

« Understand that the basic question where? Can be answered by
specifying a point location, a line object (such as a street) or a
named area object;

« Note how the resolution of these systems varies;

» Appreciate that each approach implies location in some different
space;
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« Understand that analyses will be constrained by the nature of these
spaces.

Resources needed
Pencil and paper/whiteboard/OHP to taste
Suggested student briefing

1. Ask the class to take five minutes to write down as many ways as they
can think of how they would answer someone who asks ‘where do you
live™?

Comment/answers

The main purpose of the exercise is to lubricate a discussion that should address
all the intended learning outcomes. There are many ways of locating objects and
it is useful to collate a lost of all those suggested. Latitude and longitude, some
grid coordinates in a National or State projection, house number with street
name, a named area of a city and a description of how to get to the residence
are examples among many possibilities. All may be considered aliases of each
other, and all have their differing uses and potential resolution. Using county or
city name, census tract, post/zip code, telephone area code, or regional names
are also ways of identifying location, but with variable resolutions. Precise
numerical location by latitude/longitude or even in a projection system such as
UTM may be necessary for mapping and analysis but are not often used in
everyday discourse.

Waldo Tobler (2002) provides an amusing anecdote that has a serious
implication as follows:

"Peter Gould and I conducted a little experiment in the late 1980s to
demonstrate this. He sent envelopes on which he had typed my name along with
the geographical coordinates of my house to thirty-four colleagues throughout
the world. The envelopes contained only a blank piece of paper. The instructions
to his friends were to add stamps and put the envelopes into the local postal
system”.

Tobler reports that just four of these letters arrived but in every case they were
delivered to his university office because of the ‘Professor’ title on the envelopes.
He notes that some of the postal clerks added the name ‘Santa Barbara’ to them
and that some of the letters were routed through unexpected places.

These differing methods can be converted from one to the other, or converted to
latitude and longitude, with a precision that depends on their resolution.
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Suggestions for modification
Three simple additions to this exercise are:

(1) Use a www location finding utility such as in UK the one at
http://www.streetmap.co.uk to perform searches using each and every
georeference the system uses (street name, telephone code, OS (x, y), post
code, place name and latitude/longitude);

(2) Qualify the question by some imagined location, such as overseas, in your
country, and in your locality. The first will demonstrate that the same place can
be georeferenced in many ways, whilst the second shows that the one used is
frequently context dependent;

(3) Make use of a class set of GPS receivers, or, with an eye to the immediate
future, location-aware mobile/cell phones or digital cameras capable of geo-
tagging. Obvious extensions might include student field class exercises based
around activities such as those reported at http://confluence.org to create a
benchmark photographic record of a field area, some form of GPS drawing (see
http://www.gpsdrawing.com), and an activity based on the sport known as
geocaching (see http://www.geocaching.com).
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2.3 Exercise (2): Scale and representation
Aims and introduction

A real difficulty that geography has is the considerable range of spatial scales
that are of interest, from the relatively small spaces of low-order drainage basins
and towns through to the global. This exercise attempts to reinforce the idea of
representation of different features on maps (and within GIS data bases) being
contingent on the scale at which we chose to observe them. In introducing the
exercise it is wise to make it clear that both a digital data base description and
an analogue map of the same entities are alike in that both are representations
of some underlying reality. Using on-screen or paper maps just makes life a little
easier.

Geometry, space and level

Again, all geometric object types should be addressed and the influence of scale
on this representation noted. Using standard maps implies that we are in a
metric, even Euclidean, space and, in so far as it relates to the reference frame
used the level is, arguably, primitive.

Intended learning outcomes
After completing this exercise students will

» Understand that in geography the scale at which we examine phenomena
affects what is represented and this applied both in analogue and digital
representations;

» Because of this, all representations generalize by selection, changing the
nature of the entities, and how they are mapped;

» The intended use of the representation depend on the intended use of
that information;

» The extreme difficulty of digital representation of entities that would
sustain mapping and analysis over a range of scales.

Resources needed
Web browser or series of appropriate paper maps
Suggested student briefing

1. Go to http://www.streetmap.co.uk. This is one of several websites that
provide map extracts over a range of scales. At the window enter either
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the name or the postcode of a location within Great Britain with which you
are familiar;

. The result will be that you arrive at a topographic map of the area around
your chosen point at the LandRanger scale of 1:50,000. The website calls
this ‘Zoom level 4. There is an icon that enables you to view a wider area
and the usual on-screen tools to allow you to pan around. Below and to
the left of the map is a very useful little icon that allows access to pages
that give the full key to each of the map series that are available;

. You can now step up and down scale by clicking on the zoom tool to the
right of the map display. Quickly ensure that you can access the 1:25,000
(Zoom level 3) and 1:5000 (Zoom level 2) larger scales as well as the
1:100,000 (Zoom level 5) and 1:200,000 (Zoom level 6) mapping;

. The exercise is simple. For the table of features and map scales on Table
2.1, enter a code to say how the feature is represented. It will help if you
use codes as P (point feature) L (line feature), A (area object), F (field)
and M for features that are ‘missing’ at that scale. Some entities may be
represented by more than one such geometric primitive. In each case is
the representation true to scale, or has the selected entity been
‘symbolized’ in some way? At this stage you might also too describe the
cartographic representation of the entity — what colour, line style or font
is used and why?

Feature Type 1:5000 | 1:25000 | 1:50000 | 1:100000 | 1:200000
Roads
Houses
Rivers
Land height above sea
level
Public house (‘pub’)
Table 2.1 Blank recording table
Comment/answers
The table can be developed to look something like Table 2.2.
Feature 1:5000 1:25000 1:50000 1:100000 1:200000
Type
Roads L, named L, with L, size L, size L, size very
and coloured exaggerated, | very exaggerated,
coloured. status given. | coloured by exaggerate | coloured by
ALL shown | ALL shown status d, coloured | status
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by status

Houses A, Grey A, each A, with some P&A P&A
colour building point symbols | Point Point symbols
footprint for specifics symbols and grey stipple
correctly and grey in towns
sized stipple in
towns
Rivers L, blue, L, Blue L, Blue lines | L, blue L, blue lines,
but only lines lines, generalized
the generalize
largest d
shown
Land M F, contours F, contours M M
height and spot and spot
above sea heights heights
level
Public M, but M, this is P M M
house some noteworthy! | PH symbol
(‘pub’) urban
land use
shown
coloured
as A

Table 2.2 Suggested solution?

The key points here are related to the intended learning outcomes. The entities
shown are a selection that depends on map scale and function. The geometric
character of this representation (point, line, area, field) changes according to the
mapping scale, with many being exaggerated and/or symbolized at smaller scale

mappings.

Suggestions for modification

As presented the exercise combines all the outcomes into the one analysis, but
an obvious ploy is to create separate tables for the selection and character and
cartographic representation.

The same exercise can use other similar websites, of which in UK that belonging
to the Ordnance Survey is the most obvious. It is both harder to use and more

volatile that the one suggested. The entire issue of representation in geography
is explored in a series of essays edited by Fisher and Unwin (1995).
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2.4 Exercise (3): Adjacency and relations between elements
of a set

Aims and introduction

How far apart are Derbyshire, Yorkshire and Essex? This exercise uses Gatrell’s
development of the spatial concept of adjacency as a relation between elements
(objects) of a set (Gatrell, 1983, see Chapter 1).

Intended learning outcomes
After completing this exercise students will:

» Understand that the spatial concept of adjacency is an example of a
relation on a set of area objects and can be viewed as a measure of
‘distance’ between area objects;

» These distances themselves define a ‘space’;

« Understand that the relation can be described by a geographic structure
matrix of the sort that frequently occurs in quantitative analysis;

» Be able to develop such a matrix from a map of planar enforced
contiguous zones;

» Be able to state some of the properties of this matrix.

Geometry, space and level

Here we deal with areas in a space generated by the adjacency relationship.
Since we deal with numerous area objects, the level is complex/second order.

Resources needed

Maps showing area objects such as States, Counties, and so on. Take care to
ensure that no more than 10-15 zones are represented. For recording the results
it is useful for students to use Excel or even the ‘table’ function in WORD as a
way of keeping track. Dividers for measuring lengths.

Suggested student briefing

1. Find a small pattern of zones, such as the Standard Economic Regions of
England and Wales or a contiguous set of State of the USA or Counties in
State and use it to create a table (matrix) of adjacencies in which each
element is coded ‘1’ if the zones are adjacent and ‘0’ otherwise. This is
done by listing the areas as both rows and columns of the matrix in
which the same ordering is used for both the rows and the columns.
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For example, Figure 2.1 below shows the eight ‘Standard Statistical’
regions used by UK government in the period 1945 to 1994.

Figure 2.1 The 19945-1994 Standard Statistical regions of England. 1: North 2:
North West 3:Yorkshire and Humberside 4: West Midlands 5:East Midlands 6:
East Anglia 7: South West and 8: South East

This yields a matrix of adjacencies as Table 2.3.

1 2|13 |4|5|6|7 |8
1 North * 1 1 0 o0 O 0 O
2 North West 1 * 1 1 1 0 0 O
3 Yorks 1 1 0 1 Of0 O O
4 West Mids 0] 1 o * 1 0 1 O
5 East Mids 0 1 1 1 * 1 0 1
6 East Anglia 0O 0o O O 1 * O 1
7 South West 0 O O 1 0 0 * 1
8 South East 0 o0 0 O 1 1 1] *

Table 2.3 England and Wales Standard Region adjacencies

This sort of matrix is an example of what in the literature is called a
‘geographic structure matrix’ and it is usually symbolized by a bold capital
W. Each element of the matrix is denoted w; in which the subscript ‘i’ is
the row number and the subscript ‘j’" is the column. Thus the entry at row
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5, column 6 is a ‘1’, which tells us that zones 5 (East Midlands) and 6
(East Anglia) are adjacent. This type of matrix is much used in spatial
statistical analysis, and we will encounter it again.

2. Why have we placed stars down the so-called principal diagonal of this
matrix? Is the matrix symmetric (a mirror image) about this principle
diagonal? If it is, why?

3. Can we improve on this definition? Use your map to develop a definition
of adjacency that is a ratio-scaled number, such as the shared boundary
length (measure this by stepping with dividers). Is the resulting matrix
still symmetric?

4. Finally, develop this further for each zone by re-expressing this as a
proportion of the total boundary length of that zone. Now, is this matrix
symmetric and if not, why not?

Comment/answers
See Section 1.2 for a discussion. The key issues to develop are

a) That in this example we define the spatial concept of adjacency as a
relationship between the elements (the zones) of a set (The Statistical
Regions). In the first case the concept is expressed as a binary (yes/no) but
as the second part illustrates we could expand this to an ordinal or ratio
scaled number that expresses the strength of the adjacency;

b) Adjacency is a sort of ‘distance’ between the zones in which the distance is
defined in a ‘space’ generated by these adjacency values;

The stars indicate that we need to make an operational decision as to whether or
not any zone can be considered adjacent to itself and of course the matrix is
symmetric because of the way we define adjacency as sharing a common
boundary. The same applied to the length of common boundary, but by
expressing this as a proportion of each local area’s total boundary length we lose
the symmetry.

Suggestions for modification
Once developed there is a great deal of exploration possible related to the

properties of this type of adjacency matrix but these require more advanced
mathematics:
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a)

b)

Using software such as MINITAB™, Excel, or a few lines of simple code,
the W matrix can be ‘powered’ to explore the adjacency relationship at
differing lags as described in detail by Unwin (1981), Tinkler (1977) and
Garner and Street (1978);

At more advanced level, students can be introduced by way of simple
adjacency to the more general types of spatial weights matrices and their
properties, including those of their eigensystems. The literature on this is
summarized in O'Sullivan and Unwin (2010, pages 200-205). A key point
to make here is that the W-matrix is really an expression of a hypothesis
about what is important in the geography chosen. Exercise (26) uses
some public domain software to compute and store a W-matrix.
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2.5 Exercise (4): Conceptions of distance
Aims and introduction

As we have seen adjacency is an example of a relation between elements of a
set of locations and in the last exercise our locations were planar enforced
named area objects. This exercise uses a journey in London (England) but could
easily be modified for any other city with which you are familiar using similar
resources.

Geometry, space and level

The geometries of these journeys are essentially metric but the spaces in which
they take place will not always be Euclidean. Distance is a complex/second order
concept.

Intended learning outcomes
After completing this exercise students will:

» Understand that a conventional distance, as measured by a Crow’s flying,
straight line is an example of a relation on a set;

» Realize that in human behaviour we seldom have access to these straight
line distances and that a motor car would be constrained to a network
distance which, if a taxi cab, would be the shortest path between the two
locations;

» Be able to generalize this further into cost and time distances;

« Have a view as to which would be most appropriate in an applied
problem;

» Again, realize that these various relations each produce a ‘space’;

Resources needed

Web browser

Suggested student briefing

Our objective is to get from Euston main-line railway station to Waterloo main-
line station using different transport methods and measuring the ‘distance’
between these two locations in different ways. Throughout note that we are

dealing with a set consisting of two locations {Euston station, Waterloo station}
and exploring possible specifications of a relation on this set.
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1. First of all, what is the straight line distance between these stations? A
suitable map can be found at the Transport for London website:
http://www.tfl.gov.uk/assets/downloads/Central-London-Day-Bus-Map.pdf

2. You will need to use a ruler and knowledge of the scale of the map to
answer this. As an alternative use Google Earth™ to find both railway
stations and then use the ‘ruler’ in ‘tools’ to find the ‘straight line’ distance.

3. Now suppose you were to hire a taxi cab for the same journey. The driver
has a choice of literally hundreds of ways through this network, each with
its own network distance, but they will normally take the shortest route.
This can also by found using a Google™ system in this case Google™ maps
and the supplied ‘get directions’ function. You'd probably be concerned with
how much this might cost you to get a cost distance. There is a schedule of
taxi fairs for London at
http://www.tfl.gov.uk/gettingaround/taxisandminicabs/taxis/1140.aspx that
you can use to estimate this;

4. Finally, of course, many Londoners would make the same journey by
underground (the famous ‘Tube’) at a standard fare for a journey in what's
called Zone 1. The ‘distance’ of concern would almost certainly be the time
the journey takes. The same website has a trip choice aid that will estimate
this for you at http://www.tfl.gov.uk/gettingaround/default.aspx, and you
can see which tube line is involved by looking at
http://www.tfl.gov.uk/assets/downloads/standard-tube-map.pdf

5. So in an applied problem — getting from station to station — which distance
is appropriate: straight line, network shortest path, some other route
through the road network, cost distance, or the ‘cost’ in time taken?

Comment/answers

I make it about 3.0km in a straight line, but a taxi will need to go maybe 4.85km
at a cost of around £10. Taking the ‘Tube’ costs a lot less and is a fairly easy trip
on the so-called Northern Line with six intermediate stops. The Transport for
London website suggests this would take about 10 minutes.

Suggestions for modification

At some cost in extra student effort, why not build up a W matrix of a selected
‘distance’ between a selection of the main line termini in London (for example
Liverpool Street, St. Pancras, Euston, Paddington, Victoria, Waterloo)? The
easiest way is probably via Transport for London’s journey planner and this will
reinforce understanding of the concept.
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2.6 Exercise (5): Some complications with ‘distance’

Aims and introduction

This exercise is taken fairly directly from papers by Michael Worboys in which he
explores some of the basic properties of metric and non-metric spaces.

Geometry, space and level

The geometry is that of adjacency in metric and non-metric spaces, with the
relation measured in some notion of the complex/second order concept of
distance.

Intended learning outcomes

After completing this exercise students will:

» Understand that it is possible to change definitions of ‘distance’ and thus
the properties of the spaces created;

« Realize that different ‘spaces’ are appropriate for different analyses and
that ‘network distances’ are often more appropriate than straight line
ones.

« Be able to develop a simple measure of the ‘influence' of nodes in a
network.

Resources needed

Tables of road distances between a sample of places as often found in motoring
Atlases.

Suggested student briefing

1. Using a standard road atlas that includes a table/matrix of the road
distances between towns for your country and select any five towns;

2. Use the supplied matrix to develop a W matrix showing the 0.5n(n-1)=10
unique distances between these places;

3. Using a suitable threshold distance, convert your matrix into a 0/1 binary
matrix of adjacencies;
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4. Examine each of the measures you have created in relation to the three
properties that any metric distance should have. Simply stated these are
(1) that the distance between points must be a positive number unless
the points are the same, in which case the distance will be zero; (2) that
the distance between two points is independent of which way round it is
measured; and (3) the triangle inequality, which states that it must always
be at least as far to travel between two points via a third point rather than
to travel directly;

5. If for each place, we define adjacency by its two nearest neighbors, how
does the derived binary adjacency matrix A differ and why?

6. Based on a simple inverse distance rule ‘normalize’ the distances for each
location this such that each row total sums to 1. For each place these are
expressions of a relative distance;

7. Summing for each column and ignoring the infinities, which is the most
‘influential’ place in this system?

Comment/answers

This is a sample set of result for a pretty arbitrary choice of places, although
readers with knowledge of the vitae of a past Ordnance Survey Director Generals
will understand why Berwick on Tweed is included. Table 2.4 provides the
measured road distances.

From/To  London Aberdeen Aberys Ayr Berwick

London 0
Aberdeen 503 0
Aberystwyth 211 445 0
Ayr 394 177 314 0
Berwick 338 182 311 134 0

Table 2.4: Road distances in Great Britain

Using a 220 mile threshold to define the spatial relationship ‘near’, we get
the adjacency matrix shown in Table 2.5.
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From/To  London Aberdeen Aberys Ayr Berwick

London 0
Aberdeen 0 0
Aberystwyth 1 0 0
Ayr 0 1 0 0
Berwick 0 1 0 0

Table 2.5: An adjacency matrix from Table 2.4

This remains symmetrical because the metric distance AB is same as
distance BA

If, for each place we define adjacency by its two nearest neighbors, we get
the matrix shown in Table 2.6.

From/To  London Aberdeen Aberys Ayr Berwick

London 0 0 1 0 1
Aberdeen 0 0 0 1 1
Aberystwyth 1 0 0 1 0
Ayr 0 1 0 0 1
Berwick 1 1 0 0 0

Table 2.6: An alternative adjacency matrix
This matrix is asymmetrical; places do not share the same neighbors
Using these same distances to compute an interaction matrix W, based on
a simple inverse distance rule and then normalizing this such that each row

total sums to 1 gives the results in Table 2.7.

From/to  London Aberdeen Aberystwyth  Ayr  Berwick RowSum

London © .1626 3877 2076  .2420 1.000
Aberdeen 1293 © .1461 3674 3573 1.000
.Aberystwyth ~ .3548 .1682 © 2362 2407 1.000 .

Ayr 1350 .3004 1677 © .3968 1.000
Berwick 1546 2872 1681 .3901 © 1.000
Col _Sum 7737 9184 .8696 1.2013  1.2368

Table 2.7 : An interaction matrix based on Table 2.4
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Summing for each column and ignoring the infinities, the most ‘influential’
place in this system is BERWICK. Those who know UK will know that this
isnt a very useful result, largely because of the selection of places used. At
least one very famous GI scientist might disagree!

Suggestions for modification

As in the previous exercise software such as MINITAB™, Excel, or a few lines of
simple code, the original W matrix can be ‘powered’ to explore the network
distance at differing numbers of ‘steps’ (lags) lags as described in detail by
Unwin (1981), Tinkler (1977) and Garner and Street (1978). In turn this leads to
an appreciation of the very general notion of relations of almost any kind
defining spaces of interest.
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2.7 Exercise (6): Projection and location
Aims and introduction

Students should by now appreciate that metric Euclidean distances define
perhaps the simplest of the spaces that as geographers we analyze.

A very good way to introduce the distortion properties of map projections is to
use the computer to examine the graticules (grids of parallels and meridians),
continental outlines, and Tissot’s Indicatrix for a variety of projections
Even creating a simple 'upside down' Mercator projection and moving the central
meridian from the Atlantic to somewhere else radically alters one’s perception of
the planet.
Intended learning outcomes
This exercise can be as long or as short as necessary to fit a variety of intended
learning outcomes. If you teach map projections in any detail, the ability easily
to display at least 25 standard projections and their associated graticules
together with the world coastline and a map of Tissot’s Indicatrix is absolutely
invaluable.
« List the major types of map projections and developable surfaces
and explain, with examples, how the Indicatrix enables their
distortion properties to be visualized;

» Explain why the number of possible map projections is to all
intents and purposes infinite.

Resources needed

Software to support such an exercise can be found in many GIS. Alternatively Jo
Wood's Projector is available as a Java applet at:

http://www.soi.city.ac.uk/~jwo/projector/
Note that this needs Java to be installed on any machines using it.

Suggested student briefing

It often comes as a surprise how the 'shape' of the continents and oceans
changes when we change our map projection. Although promoted largely as
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propaganda, the controversy surrounding the Peters projection UN is a
good example of how our perception of the planet can be changed. This
experiment uses some software to draw the outline of the coasts at global
scale on a series of 25 different map projections.

1. If the entire topic of map projection is unfamiliar, go to the
Wikipedia entry http://en.wikipedia.org/wiki/Map_projection
and read it through carefully.

2. Types of deformation
e At your computer, go to the Java applet at

http://www.soi.city.ac.uk/~jwo/projector/. If it does not load
then you may well have also to install Java.

» In view ensure that you have switched on all three possible
displays (graticule, Indicatrix and coastline)

» Select cylindrical then Mercator as an example of a
conformal projection. Examine the Indicatrix and the
graticule and confirm that the former is everywhere a circle
not an ellipse. In doing this it is useful to go back to view
and switch off the coastline display. What property of this
projection does this signify? What differs across the map of
circles and why?

» Repeat for the Lambert Equal Area which is another
cylindrical projection. How does the distortion shown by the
plot of the Indicatrix differ and what property does this

signify?

» Repeat for the Equidistant Conic as an example of an
equidistant projection.

It should be clear that all map projections distort some combination
of area, shape, direction, bearing, distance and scale. It should also
be clear that the Indicatrix is a simple graphical way of showing
some of these properties by way of the Indicatrix area, orientation
and, if an ellipse, the ratio of its two axes. Ensure that you
understand how these relate to properties of each map projection.

3. Developable surfaces

« Examine a variety of azimuthal projections;
« Examine a variety of conic projections;
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« Examine a variety of cylindrical projections;
« Finally, look at the Mollewiede and Eckert as examples of
mathematical projections.

In all cases, try to relate the map of the global coastlines with the
graticule and the Indicatrix

Comment/answers
There are no ‘correct’ answers.
Suggestions for modification

WWW has numerous other resources for teaching map projections in a relatively
informal way, for example:

http://www.csiss.org/map-projections/index.html

This site has examples of numerous other projections and links to alternative
software for creating them such as:

http://www.uff.br/mapprojections/mp_en.html
Other sites are:

http://www.nationalgeographic.com/xpeditions/lessons/01/g912/projections.html
http://www.youtube.com/watch?v=AI36MWAH54s

The exercise can be extended almost without limit. Formally it is useful to quiz
students on what projections are appropriate for a variety of mapping tasks. One
of the more fascinating extensions is to introduce a discussion on how our
familiar map projections influence our perceptions of our place on the planet.
Once students have accepted that the planet looks different according to how we
chose to display it, a further discussion on our mental maps can be introduced.
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2.8 Exercise (7): Transforming locations

Aims and introduction

A critical and sometimes neglected step in many data integration exercises is the
co-registration of data from different sources onto the same co-ordinate system
using a grid on grid transformation. This exercise can be done using GIS
software, but it is very instructive to follow all the steps using more basic tools.
This graphical exercise is intended to help fix ideas about co-ordinate
transformation.

Intended learning outcome
After completing this exercise students will:

« Understand that we can take one pattern of locations into a different co-
ordinate system by means of an affine transformation that involves a
change in scale, translation of the origin and rotation of the axes.

Resources needed

You will need some lined graph paper, some tracing paper (ideally transparent
lined graph paper), a pencil and, perhaps, a calculator or spreadsheet.

Suggested student briefing

1. Create a grid on your graph paper with X'and Y axes each going from 0 to
100.

2. On this grid mark eight randomly located points and read off their (x, y)
co-ordinates.

3. Use the tracing paper to prepare an identical set of axes, but do not mark
any points on it.

4. Place the transparent grid on your original one with its origin exactly on
the origin of the original one and rotate it by a small known angle (say
15°).

5. Next shift (translate) the origin by a known small amount, and then mark
on the transparent paper the positions of your eight points.

6. Read off the co-ordinates of the eight points in this new system.

Comment/answers
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The exercise is intended to demonstrate how an affine transformation ‘works’. A
detailed blow by blow account is in O'Sullivan and Unwin (First Edition only,
2003, pages 290-301).

Suggestions for modification
If mathematically inclined, compute and use the affine transformation matrix for

this operation. The development of the single affine matrix is described in the
reference provided.
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Chapter 3: Patterns of Point Objects

3.1 Introduction

This chapter continues the examination and clarification of concepts relating to
point objects, for which as argued in Chapter 1, appropriate, complex/ second
order, concepts relate to words like ‘distribution’, ‘dispersion’, ‘density’, ‘pattern’
and ‘scale’ and, at higher level still, third order concepts relating to point process
models, stationarity and isotropy/anisotropy. In this chapter we provide
suggestions for exercises based mostly in the CRIMESTAT package that explore
such second order concepts as dispersion, density and pattern in distributions of
point located objects. The main exercise looks critically at familiar tests against
the hypothesis of complete spatial randomness, otherwise perhaps known as ‘no
pattern’.
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3.2 Exercise (8): Dotting the map

Aims and introduction

Dot maps show differences in the location and density of point located ‘events’.
Although numerous methods of point pattern analysis have been developed, it is
only seldom that in practical studies we have suitable data for these analyses.
The aim of this exercise is to show why this is so, and to force students critically
to examine any dot/pin maps that they see.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately
presents complex/second order concepts referred to as distribution,
dispersion, pattern, clustering, and density. This exercise uses visualization
to address them.

Intended learning outcomes
After doing this exercise, students will

» Be able to recognize a simple dot or pin map;

« Understand the characteristics of a true point pattern suitable for
statistical analysis as distinct from a simple dot density map;

» Appreciate the importance of the ‘art and science’ of cartography in
determining the look of a map.

Resources needed
WWW browser with access to Google™.
Suggested student briefing

1. In order to understand some of the issues in ‘dotting” a dot map watch
the tutorial from Sara Fabrikant at
http://www.csiss.org/streaming_video/csiss/fabrikant_dot maps.htm. Pay
particular attention to the distinction she makes between a ‘one to one’
and a ‘many to one’ mapping and to the importance of exact locations vs.
data that are aggregated over areas.
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It should be clear that for a ‘one to one’ mapping the basic data have to
be suitable, with perhaps five basic conditions being necessary. These

are.

The pattern should be mapped/projected on the plane such that
distance between the points are preserved;

The study area should be determined objectively, with boundaries
that are not arbitrary. In practice this is very hard to achieve;

The pattern should be an enumeration of all the defined point
objects in the study area;

There should be a one-to-one correspondence between dots on the
map and objects on the ground, one dot, one object;

Locations should be proper, not for example arbitrary points within
areas chosen to be in some sense representative.

2. Now go to Google™ (or similar search engine) to find a proper dot map
that meets all five conditions. If you search for ‘dot map’, ask yourself
several questions:

Is there a one to one between the dots and distinct ‘events’ such as
the location of a crime, some facility or whatever? Often dotting is
used as a cartographic symbol with a ‘many to one’ relationship to
the phenomenon being mapped, for example ‘1 dot represents
2000 acres’. These are dot density maps of the ‘choropleth’ variety;

Are the locations ‘proper’? Is each dot located at the correct place
where the ‘event’ occurred or is to be found? Often dots are placed
at the centroids of areas or in a stipple across an area, so the
locations have no special meaning and can’t be used in point
pattern analysis;

If the two conditions above are met, is it a sample or a complete
enumeration or census?

3. If searching using ‘dot map’ doesn'’t reveal anything, try instead a search
using the post-GIS term for the same type of map which seems to be ‘pin

map’.

Comment/answers

Almost all of the images returned using a ‘dot map’ search will actually be dot
density maps that do not meet the five conditions. Searches using ‘pin maps’
seem to do better. It is probable that students will find genuine examples in
some crime maps and/or maps in epidemiology. It is worth emphasizing exactly
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what dot density maps show, which is area aggregated data and thus make the
point that just because dots are used in the representation it does not mean that
the data themselves relate to point objects. The simple conclusion is that we
seldom have ‘pure’ point data at precise locations on the plane of the sort
required by almost all the standard methods of point pattern analysis. This is a
very important lesson!

Personally, I've never been sure that they are all that useful unless they show
rates of occurrence. In crime pattern analysis, the dots might useful because
they tell the police where to deploy their resources, but in epidemiology and
criminology surely it is the rate that matters, relative to some underlying factors?

In addition, a majority of the maps returned will be cartographically awful, hardly
worth drawing in the first place.

Suggestions for modification
Discussion of the conditions for point pattern analysis to be sensible can be
extended further. For example, a case can be made that some methods of

analysis do allow use of sampled data (most obviously using randomly
distributed quadrats and/sampling nearest neighbour distances in ecology)
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3.3 Exercise (9): Drawing your own pin map
Aims and introduction

There are two exercises here, the first of which simply uses Google™ to produce
maps, whilst the second uses Microsoft Exce/ ™ to produce maps of three
supplied point data sets. The overall aim is to introduce the idea of patterns in
point data that are revealed by the maps.

Geometry, space and level

As in Exercise (8), a set of located point objects when mapped in a metric
space immediately presents complex/second order concepts referred to as
distribution, dispersion, pattern, clustering, and density. This exercise uses
visualization to address them.

Intended learning outcomes
After doing this exercise, students will be able to:

» Produce dot/pin maps of any facilities recorded in the Google™ Maps data
base and/or

« Map any point located data provide as (X, y) co-ordinate pairs in a
Cartesian system;

» Criticize the cartography they employ;

» Suggest possible descriptions for the point patterns revealed.

Resources needed
Approach (a) requires a web browser and (b) needs Microsoft Exce™ or, should
you prefer it, whatever standard GIS you use. Approach (b) also requires access
to the three supplied data sets called BOOK, BANK and SNOW.
Suggested student briefing
a) The lazy way

1. In your web browser got to http://www.google.com and select the

Map option;
2. If you live in, or know of, any reasonably large city, enter text in the

search box as ‘coffee shops in xyz’, where xyz is the name of your city.
If coffee shops don't appeal then try some other suitable facility;
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3. The result will be returned as a pin map of the type discussed in
Exercise (8);

4. In 3.1 above, five criteria were suggested to use in testing whether or
not such a map is of a genuine point pattern that might be analyzed
using methods to be introduced in the next Section. Evaluate your
result in the light of these five criteria;

5. Finally, in your own words how would you describe the patterns
revealed? Are the point locations ‘clustered’, ‘random’ or ‘regular?

b) Doing it yourself using Microsoft Excel/ ™
Three text files of (x, y) co-ordinates of some point ‘events’ are provided:

Book: These are the 12 sample data taken from Table 5.2 page 131 of
O’Sullivan and Unwin (2010)

Bank: This is a famous data set that has been analyzed many times, notably by
the statistician Brian Ripley. These data were taken from the website associated
with the text by Davis (2002). It gives 47 (x, y) pairs giving the location (in a
projected Euclidean co-ordinate system), of dark magnetite crystals in a polished
cross-section of a rock called anorthosite. The interest is in whether or not this
distribution is random within the section. Co-ordinates are on a 100x100 grid,
with its origin at the bottom left, but no units are given (assume cm?) and the
rock in question forms part of the doorway to one of the banks in the city of
Cambridge, England. The origin of these data is simply to remind you that not all
‘spatial analysis’, even in a GIS, must be ‘geo-spatial’.

Snow: This is probably the most famous point data set ever to be analyzed. It
consists of the locations of 578 deaths from cholera recorded by Dr. John Snow
in the Soho area of London during an outbreak of cholera in 1854. Shnow mapped
these data as a dot map and was able to show that they clustered around a
single water pump (no piped water in those days!) in Broad (now Broadwick)
Street. Acting on his advice, the authorities removed the handle from the pump
and the epidemic ended soon after, although it may well have already been past
its peak. The events are celebrated by a facsimile of the pump and in the naming
of a nearby pub the ‘John Snow’. All epidemiologists and all spatial analysts
should at some time make a pilgrimage to the street and have a drink in the pub
that now bears John Snow’s name.

Snow'’s work is widely regarded as the birth of scientific epidemiology, and his
demonstration that the vector for cholera was water-borne led to massive
investment in UK during the second half of the nineteenth century to provide
safe public water supplies. Of course, the story isn't as simple as it is sometimes
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suggested. For a recent scientific account, see Brody, H. et al., (2000). For a
‘popular’ account that by Steven Johnson (2006) is highly recommended.

These data were digitized at the request of Professor Waldo Tobler (UCSB) by
Rusty Dodson of the US National Center for Geographic Information Analysis
from a reprint of Snow’s book On Cholera (Oxford University Press, London).

Although the origin is at (0, 0) these data have arbitrary co-ordinates that range
on X from 8.280715 to 17.938930 and on Y from 6.090047 to 16.972760. In the
real world, one full unit (e.g. 1.0000) represents about 54m on the ground, so
the minimum enclosing rectangle has an area of about 0.3km?. Note that the
coordinate system provides for a lot of unused ‘white space’ around these points,
which you might judge should not be included in any analysis.

1. For BOOK, BANK and SNOW produce simple dot maps. This can be
done in Microsoft Excel ™, provided care is taken to scale the X, Y
axes appropriately as follows. Go FILE>OPEN>FIND and navigate to
where you have saved BANK.TXT. Then chose ‘delimited” and set this
to ‘space’ with the data type set as ‘general’. This should incorporate
the two columns into Microsoft Excel/™ ;

2. In the chart wizard, it's a simple matter to chose the (X,Y) scatter
plot. What I seem unable to do is to stretch the axes on these plot
such that they have the same scale (you can set the range), and
have usually done this before printing by clicking on the two
horizontal axes of the display and pulling them out until I get the
desired equal scale;

3. If you have access to ArcGIS™ or similar, you should be able easily
to draw ‘proper’ maps of these three distributions;

4. In Exercise (8), five criteria were suggested to use in testing whether
or not such a map is of a genuine point pattern that might be
analyzed using methods to be introduced in the next section.
Evaluate your result in the light of these five criteria;

5. In your own words how would you describe the patterns revealed?
Are the point locations ‘clustered’, ‘random’ or ‘regular’? How do they
differ?

6. How do you think the choices made for the ‘frame’ will affect the
descriptions you have given?

Comment/answers
Book
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Figure 3.1 Dot map for Book

Figure 3.1 shows the distribution of events in BOOK. I have used Microsoft
Excel™, copied into WORD. The box could be re-sized such that the scales
on X and Y are the same, noting that the range of value on X is greater.
Visually I would say that the pattern looks fairly random, but with only 12
events how can one tell?

Figure 3.2 Dot map of BANK

Figure 3.2 shows the distribution of events in BANK. This is also from
Microsoft Excel™, but scaled and transferred into PAINT where it has been
edited a bit more. It ought to have a scale, as we are now well on the way
towards a proper ‘map’. Visually I'd describe it as ‘more regular than
random’.
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Figure 3.3 Dot map of SNOW

Figure 3.3 shows the distribution of events in SNOW. The usual
interpretation is that the cases ‘cluster’, that is they are more aggregated
than random, with the clustering around a specific point, the Broad Street
water pump. Note that in this hypothesis, we only have one cluster, so what
is the value of the standard CSR model in this case?

One obvious point that the SNOW data show is the dependence of what we
see on the ‘edges of space’ that we chose to use. We can make this look
even more clustered by simply extending the frame. Zooming in to a subset
of these same data might well make them look random or even dispersed.
In the case of BANK, zooming out would gradually make hem look more
aggregated than random. In other words, the choice of frame is critical in
the visualizations and what should be done is basically to proceed carefully
unless there is a ‘natural’ frame.

Suggestions for modification

An obvious extension is to ask students to run a kernel density estimate over
these data, with three possible reasons for interest:

a) As a means of locating ‘hotspots’ in the patterns;

b) To initiate a discussion of band width, kernel function and even the
appropriateness of the underlying ‘geography’ (For example, in the Snow case
should we use street walking distances and not straight lines?);

¢) To show the value of a transformation from a pattern of discrete objects (the

events) into a spatially continuous field of density estimates.
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3.4 Exercise (10): Proportionate symbol maps
Aims and introduction

Proportional symbol maps show differences in the location and magnitude of
point located ‘events’ and are appropriate for visualizing what statisticians call a
‘marked’ point pattern. What we now have is a pattern of discrete point
objects/events, but in each case we have an additional ‘weight’ attached to each
event. Almost all the basic methods of point pattern analysis can be modified by
use of such weights.

Geometry, space and level

As Exercise (8) and (9), a set of located point objects when mapped in a
metric space immediately presents complex/second order concepts referred
to as distribution, dispersion, pattern, clustering, and density, but in this
case we have two sources of variation in geographic space and but with a
primitive/first order notion of magnitude added.

Intended learning outcomes
After doing this exercise, students will

« Be able to recognize a true proportionate symbol map;

» Understand the difficulty of simultaneously associating both variation in
magnitude and variation in geographic space;

» Be able to distinguish such maps and the data on which they are based
from maps that use similar symbolism but to display area aggregated
data;

» Appreciate the importance of the ‘art and science’ of cartography in
determining the look of a map.

Resources needed
WWW browser with access to Google™.
Suggested student briefing
1. Go to Google™ (or similar search engine) to find a proper
proportionate symbol map that meets all the five conditions noted in

Exercise (8). Ask yourself:

2. Is there a one to one between the dots and distinct ‘events’ such as
the location of a crime, some facility or whatever?
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3. What is the numerical variable that is attached to each event in the
pattern?

4. Are the locations ‘proper’? Is each dot located at the correct place
where the ‘event’ occurred or is to be found?

5. If the conditions above are met, is it a sample or a complete
enumeration or census?

6. Is the way the symbol used is related to the magnitude of the variable
being displayed appropriate?

7. Can you make ‘sense’ of the distribution?
Comment/answers

The results are likely to be much more satisfactory, cartographically speaking,
than for dot/pin maps, but there is a real difference between maps in which the
symbol refers to an exact spatial location (such as, for example, size-graduated
circles to show the output from a series of point located factories) and those that
refer to data that are an aggregate for a specified area and are usually located at
some central point within the area (such as a population map of the Counties in
a State). In fact, examples of the former will be hard to find. Almost always the
maps found will actually have symbols (circles are favourite, but beware some of
the bizarre symbols that were found) used as a form of area symbolism and their
locations were at some arbitrary point (usually the centroids) within the areas to
which the aggregate data refer. Exercise (22) on choropleth mapping makes
some further points about this sort of data, especially the folly of mapping
absolute totals when using area aggregated data. It is worth using the results to
point out the problem of isolating effects related to the geography of the
locations themselves at the same time as their magnitudes.

Suggestions for modification

The main interest in this exercise is likely to be the weird and wonderful shapes
used by some web cartographers to visualize the located quantities. It is well-
known that use of even the simple circle with its area proportional to the value of
the located datum can mislead. Human beings simply do not ‘see’ circle area in
this way. The classic study and the suggested ‘law’ that corrects for it is by
Flannery (1971).

Students may well also find maps that have as their symbols graduated pie
charts showing the proportions of some constituent of the total. These can
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display an enormous amount of data, but whether these visualizations are
effective is moot, and might form the basis of an in-class discussion about the
balance between map clarity and data volume/character.
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3.5 Exercise (11): Centrography
Aims and introduction

The best way to learn something about point pattern analysis is to do it. This
exercise uses public domain software and three supplied data sets to go through
typical analyses, but at the same time highlighting the practical implications of
some of the difficulties. It will probably take students around 4-5 hours to
complete all the tasks.

« To demonstrate computation of simple basic point pattern measures with
different types of patterned data;

« To illustrate some of the problems and issues that might emerge in such use,
notably the influence of the area used and the need to understand edge
effects.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately
presents complex/second order concepts referred to as distribution,
dispersion, pattern, clustering, and density. This exercise uses simple
arithmetic to address them.

Intended learning outcomes
After doing this exercise, students will

» Realize that the boundaries of the space we choose greatly affect
these types of measure;

« Understand that centrography does not explicitly capture the notion of
pattern in a distribution of point events;

« Critically assess the situations in which these measures might be used
to compare different distributions in the same area and/or the change
in a distribution over a sequence of time slices.

Resources needed

CrimeStat III, produced by Ned Levine Associates for use by police forces
interested in the spatial distribution of crime, is available as a free download and
can be used to analyze almost any point pattern, not just the distribution of
crimes. Although it will compute many of the measures we have discussed, it
doesn’t compute a quadrat analysis or some of the more esoteric measures, such
as G(d) and F(d), nor does it have serious production graphical capabilities.
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Likewise, if you have an Apple™ machine you'll need to run it in Windows
emulation mode. The graphic deficiencies can be overcome, either by use of
ArcGIS™ ‘shape’ (.shp) files as export and import, or by using ASCII text files
(.txt) files imported into Microsoft Excel™.

Suggested student briefing

1.

Visit the website at http://www.icpsr.umich.edu/CRIMESTAT/ and
download the Crimestat III software. It is best to download all the
associated files at the same time. Follow the instructions to install
the program;

Almost all the problems you might have when using Crimestat I1I will
be associated with errors made at the data description and entry
stages, so it pays to take care.

In Data:

»  Set file characteristics at ASCII

» Select file, say BOOK, and navigate to it

* Check the SPACE SEPARATOR and ensure that there are 0
header lines and 2 columns.

On the Data Set Up screen, take care to ensure that you:

» Set X as column 1

 SetY as column 2

» The remaining fields should be either <none> or <blank>

e Set the type of co-ordinate system to ‘Projected’, units to ‘m’
(they are actually arbitrary).

Several of the Crimestat routines require either a ‘reference’ file, a
‘measurement’ file, or both. Experience suggests that although you
can get some results without creating and saving these, it's often
better to create do this right at the start. Note, too, that saving the
parameters, available under the ‘options’ menu, saves both reference
and measurement files. If you do this, you need to think hard about
what area to input and about the density of estimates you want in,
for example, the K(d) function and/or kernel density estimation
routines, so you may need to revisit this step!

You are now ready to analyze some data!
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2. Using BOOK, and to gain confidence, show that the mean center of
the 12 events is at (52.575, 46.175). In addition, record the average
density, and standard distance;

3. Use BANK and then SNOW to do the same things;

4. Do these numbers tell you very much? Do they help differentiate the
patterns?

5. On your plot of the SNOW data, locate the mean center and confirm
that it does indicate something useful.

Comment/answers

Assuming projected data with co-ordinates in m Table 3.1 shows the
results, but the exact numerical values aren't important:

File n Mean X Mean Y Density (m assumed) Standard
distance
BOOK 12 52.6 46.2 0.001571 43.98
BANK 47 36.6 40.1 0.006442 39.24
SNOW 578 13.0 4.7 5.500000 2.56

Table 3.1 Centrographic measures for BOOK, BANK and SNOW

Obviously one needs to convert the apparent density units into those
appropriate for the particular data set. These centrographic measures tell us
very little, at least in these applications. Answers will all lie close to the
centre not simply of the data co-ordinates but of the frame chosen, around
(50, 50). They are useful to compare patterns of ‘events’ when these events
are of different kinds in the same geographic area, for example the
locations of stores of differing types across a city area. They are also
sometimes useful in tracking the evolution of a pattern over time. One
minor use I can see is for the so-called ‘standard deviational ellipse’ (not
circle) which can indicate a pattern of events that has some directional bias.
Maybe, just maybe, the SNOW analysis shows a third useful thing they can
do?

Suggestions for modification

1. Read the PDF files from the manual Chapter 1 and then Chapter 2,
sections I (Data Setup), 11 (Spatial Description) and III (Spatial
Modeling);

2. There is no need to go further than Chapter 2, but you might also read
appropriate bits of Chapter 4.1 — 4.17 (Centrographic Statistics,
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Chapter 5.1, 5.7, and 5.40 and Chapter 8.1 — 8.14 on kernel density
estimation);

. You might also like to follow in its entirety the example given at the
end of Chapter 3 (page 3.32 et seq.) using a supplied .dbf file and the
‘general sample data’ found in a ZIP file. If you do this take care to
name the columns correctly.
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3.6 Exercise (12): Nearest neighbor statistics
Aims and introduction

In elementary texts such as Unwin (1981), the most often used measure of
spatial pattern is the classic nearest neighbour statistic devised originally by
Clarke and Evans (1954). The logic behind this statistic is described by O’Sullivan
and Unwin (2010, pages 130-132 and 143-145). Basically the so-called R-index is
the ratio of the mean of the observed distances from each event in the pattern
to its nearest neighbour to the expected mean distance under the hypothesis
that the pattern is random. A statistical significance test can be developed, since
both the expected mean distance and its variance are readily obtained from
simple mathematics. The approach has a number of possible traps for the
unwary, not least of which are the choice of the ‘frame’ in which the events are
considered to be present and the possible impact of unwelcome effects at the
edges of the distribution when the number of events is low. This exercise uses
Crimestat III and the same data as in Exercise (11) to illustrate these issues.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately
presents complex/second order concepts referred to as distribution,
dispersion, pattern, clustering, and density. This exercise introduces the
analytical/third order concept of a spatial process.

Intended learning outcomes
After doing this exercise, students will:

» Be able to conduct a nearest neighbour analysis using Crimestat III;

« Understand that, if the R-index is the ratio of the observed to expected
mean distances to nearest neighbour, the ‘expected is relative to some
hypothesis most obviously that of complete spatial randomness;

» Be able to assess the statistical significance of the departure of the
computed R-index from 1.0 using Student’s ¢

» Discover how importance the choice of frame is to the results obtained,
preferably by showing how this is taken up into the calculations by way of
the study region area used to find the expected mean distance under the
null hypothesis that of compete spatial randomness;

* Note that a general test such as this might not be what is wanted in a
specific case study such as John Snow’s problem;

« Finally, understand that scale effects can be addressed using the same
approach to examine distance to second, third, etc, nearest neighbours.
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Resources needed
Crimestat III together with the point pattern data sets used in Exercise (11).
Suggested student briefing

For these exercises, unless specifically requested, DO NOT set the area in the
measurement parameters section of the file set up.

1. Using BOOK use >spatial description>distance analysis I>nearest
neighbour analysis to confirm that the mean distance to nearest
neighbour for these 12 points is 21.62 as given on page ;

2. Using BANK confirm that the Clark and Evans R with no edge correction
and using the Crimestat III default way of finding the area from the so-
called minimum enclosing rectangle as (77-1)*(96-0) = 7296 cm? is:

R= ==~ =12539
d 6.23

7.81

With a t-value of 3.33, this is significantly different from random at
p=0.001. Given that we have observed mean distance to nearest
neighbor greater than expected, we infer that the distribution of points is
‘more dispersed than random’.

3. However, there are two well-documented issues with this statistic, which
make it not very ‘GISable” and the consequences of both can be
illustrated using these same data. First, there is a critical dependence on
the area used in the calculation of the expected mean distance. In
computing the index, Crimestat III defaults to use the area given by the
range of the co-ordinates on the X and Y-axes which gives an area of
7296 cm?. To illustrate this, repeat the analysis, but in this case in
‘measurement parameters’ set the area to be that of the entire frame,
which is 100 units x 100 units = 10,000 units-squared. Confirm that we
now get:

d .
R= =% = 781, 1.0710

7.29

S

exp

With a t-value of 0.9317, this isn't statistically different from random.
Note that there is no ‘natural’ boundary for these data: in fact I suspect
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that the size was determined by Professor Ripley’s unwillingness to
measure any more crystals!

What does this tell you about the idea of ‘randomness’ in point patterns?

. Second, there is also an effect at the edges of the distribution. For small
numbers of events the effects can be quite dramatic, shifting the null
value from 1 upwards into the ‘more dispersed than random’ range. This
arises because points near the edges of the distribution are forced to
find neighbors within the space, when in reality it is probable that their
true nearest neighbors would be at some shorter distance outside the
frame. This clearly biases the mean upwards. I know of four ways of
handling this issue. The first is that used by Crimestat III in which such
points are handled by taking the distance from a border event to the
frame edge (assuming either a rectangular or circular frame) if this
distance is less than any measured distance to the nearest event within
the frame. Section 5.11 of the Crimestat IIT manual explains this in
more detail. To see what happens, re-set the ‘measurement parameters’
area to zero and then run the program again, but this time ticking the
‘rectangle’ edge correction box. This will correct things as:

R= Do - 640, 1.0274
d 6.23

exp

The second places a ‘guard area’ around the frame and proceeds as
usual but allows points near the edge of the frame to find neighbors
within the guard region. Of course, the nearest neighbour distances of
these guard points are not themselves included in the analysis. The third
approach uses a series of edge corrections, established by a
combination of mathematics and experiment. Possibly the most elegant
approach is the fourth, which wraps round both edges of the frame, to
meet their opposite side and then proceeds in the usual way. Notice that
we now have three possible values for the nearest neighbor statistic for
these same data, dependent on what we assume about the area of the
region and how any edge effects are handled by the software. If nothing
else this should alert you to the need to take extreme care when using
this approach, the more so if you don't actually know precisely how any
GIS you use does its calculations.

. Load SNOW and repeat the above analyses. It is instructive to
experiment with different values for the region area. Does the nearest
neighbor statistic help in any meaningful way in testing Snow’s
hypothesis?
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6. A third problem with the distance to nearest neighbour is that, by taking
only the nearest neighbour distances it only indicates the nature of any
global patterning at this ‘scale’. This deficiency can be circumvented by
repeating the analysis (the mathematics is essentially the same) for
successive ‘orders’ of neighbors and so examining the patterning at
successively longer distance scales. Crimestat III lets you do this on the
basic distance analysis 1 screen by asking for as many neighbors as
desired to be considered. Do this for both BANK and SNOW but when
you have the results, use the GRAPH option to get simple plots of the
change in R with order of neighbour.

Comment/answers

See test above. The sensitivity of the test to the definition of the study area and
with small n to edge effects comes as a surprise. It is useful to point out that
Snow didn't really need to do any statistical analysis to get his point across.
Steven Johnson’s (2006) book should be referenced for the complete story.

Suggestions for modification

In Snow’s second map, the usual display of a point pattern that we have seen so
far was supplemented by a line enclosing all the houses that from his local
knowledge Snow knew to be closer to the infected Broad Street pump than they
were to any other. In essence this was what future spatial analysts would call a
Voronoi diagram or Thiessen network and it showed with astonishing clarity that
not only did the cases cluster, they clustered around the suspect pump with only
a few exceptions of deaths to people for whom the pump was not the nearest
source of water. The pattern of streets in 1854 wasn't the same as it now is, but
a rough approximation to the Snow’s border can be obtained by computing and
displaying the Voronoi/Thiessen network on top of a dot/pin map of the deaths.

If students have access to a GIS capable of computing the Voronoi tessellation a
display of these point data with the Voronoi diagram for all 13 pumps in the area
is a very convincing demonstration of the power of simple, almost geometric
‘spatial analysis’. 3DField, used in Exercise (30) will compute this as well.
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3.7 Exercise (13): Ripley’s K statistic
Aims and introduction

In view of the problems with the single number approach, it is hardly surprising
that spatial statisticians have tried to characterize pattern using distance
functions such as those discussed in the text. Of these, Ripley’s K(d) is the most
satisfactory. This exercise is a simple introduction to the approach. The theory
behind the approach is introduced in O’Sullivan and Unwin (2010, pages 135-137
and 146-148.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately
present complex/second order concepts referred to as distribution,
dispersion, pattern, clustering, and density. This exercise uses both the
analytical/third order concept of a spatial process and visualization to
address them.

Resources needed

Crimestat III together with the point pattern data sets used in Exercise (11)
Intended learning outcomes

After doing this exercise, students will:

» Be able to conduct a point pattern analysis using Ripley’s K(d) function
approach in Crimestat I1I;

« Understand the process by which a mean value of K(d) at some distance
dis estimated;

» Be able to interpret a graph of computed values of K{(d) against distance,
d

» Understand how theoretical values for a random distribution can be
derived and used to convert K(d) into the L(d) function in which the
theoretical expectation for a random pattern is zero at all distances;

» Understand that this approach enables investigators to examine the scale
at which a pattern of point events can be said to ‘cluster’;

» Be able to assess the statistical significance of the departure of the
computed K(d) using the randomization approach.

Suggested student briefing
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Much modern work in point pattern analysis uses the K(d) function approach
developed by Ripley (1976) which is based on all the distances between events in
the pattern. Computation of Ripley’s K(d) is easy to explain but very tedious to do
except by computer. All we do is to place circles, of each radius d, centered on
each of the events in the pattern and find the number of events that fall into that
circle. Doing this with the same radius d centered on each and every event allows
calculation of a mean number for this distance. All we then do is to repeat this for a
series of distances. Each mean count is divided by the overall study area event
density to give K(d). Formally this is:

Kld)= ) ZI#[SnDA Cls,.d)]
% %Z #S0 Cls,,d)]

Remember that C(s,.d) is a circle of radius d centered at s and the operation
specified by the numerator is the ‘number of’ (#) ‘events’, S, ‘included in’ (U )
that circle. Because all distances between events are used, over a range of
distances, this function is much more informative about the patterning than
any single number such as the R-index ever could be, but what values would
we expect if the pattern is random? In fact this is easy to calculate, at least if
there are no problems with edge effects and the definition of the area of
interest. Since 1id ? is the area of each circle, and A is the mean density of
events per unit area, the expected value of K(d) is simply

2
B[k(d)) = 11

= nd*

Because the expected function depends distance squared, both the
expected and observed K{(d), this function can become very large as d
increases and it is difficult to see small differences between expected and
observed values when they are plotted on appropriately scaled axes. The
usual way round this problem is to convert the expected value of K(d) to zero,
by dividing it by T, taking the square root, and then subtracting d. as

K@)
m

L(d) = - d

The result is another function of distance, this time called the L function. If
the pattern is random performing the same operations on the observed values
of K(d), we should get values near zero. Where L(d) is above zero, there are
more events at the corresponding spacing than would be expected under
IRP/CSR; where it is below zero, there are fewer events than expected.
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Crimestat III will provide an estimate of K(d), but to do so it has to have a
defined reference file of a grid of locations. It also produces all the data needed
to plot L(d), together with a simulate envelope around this for use in evaluating
the significance of departures from the random expectation for L(d), which is
zero.

1. Start Crimestat III

2. Using the distance analysis 1 screen, set up and compute the K(d)
function for both BANK and SNOW. The output is the L(d) (called ¢ on
screen)

One problem with these functions is that at large d edge effects enter into
consideration, where a substantial proportion of each circle is outside the
study area. In these cases by definition there are no events outside the study
region, so the number of events in the circles is lower than would be expected
based on an assumption of uniform density. This is a problem in almost all
work in spatial statistical analysis: we almost have to either to break some
assumption made in the derivation of the theoretical values or to attempt
some corrections that take them into account. Nowadays, plentiful computer
power enables us to use a simulation approach to this problem. No matter
which statistic we are interested in, the procedure is always very simple: use a
computer to generate a large number of patterns according to some
hypothesis we have about the process. In this case we'd simply use the
computer’s random number generator to give randomly located point ‘events’.
Next, for each pattern we measure the statistic to give an expected
distribution of values against which the observed values of the same statistic
can be compared. This approach lacks mathematical elegance, but it enables
us to allow for things like edge effects, simply by using the same study region
in the simulations as in our observed data. Such a simulation approach is
known as a Monte Carlo procedure, and is widely used in modern statistics,
but it is computationally very intensive especially when the nhumber of events
in the observed and hence also the simulated patterns is large. There is also
controversy about how many simulated patterns should be used. Some purists
recommend use of a very large number, say 999, whereas those willing to
take a bigger risk in their assessment might only use 99, but it really rather
depends on the extent to which the statistical; assessment is important.

3. For both BANK and SNOW use Crimestat III to compute and plot the
L(d) function. In doing this, use the simulation routine with, say 99 runs
to get and plot an estimate of a confidence envelope that can be used to
assess the significance of the observed values. Note that use of the
GRAPH button will plot the so-called simulation envelope and that it is
then easy to see at what distances the observed L(d) is outside and thus
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indicative of a distance scale at which the pattern is more/less regular
than expected;

4. 1In doing this note that for SNOW with n = 578 the simulation will take a
perceptible length of time even on a fairly quick machine!

5. Describe how the two patterns differ and the extent to which these
results confirm your previous analyses with the same patterns.

Comment/answers

Figure 3.4 shows the results for BANK (left) and SNOW (right) using Crimestat
IIT with no edge corrections and with simulation envelopes based on 99 runs.

Figure 3.4 Results for Ripley’s K(d) function for BANK and SNOW

On this display the observed L function is in blue and the green and red lines
show the extreme values above and below in the simulations. It can be seen that
the observed function for BANK is often within the simulation envelope b