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Chapter 1: Purpose and Motivations 
 
1.1 Introduction  
 
What is spatial literacy and what is a spatial concept? 
 
This little workbook provides a series of relatively simple, usually numerical or 
computer-based, exercises that together illustrate some of the basic spatial 
concepts whose mastery might be held to be a component of what has been 
termed spatial literacy. The exercises themselves have been drawn from 
experiences teaching geography at University level in a variety of institutions and 
have in most cases been tried and tested many times. A few are newly minted to 
fill some of the more obvious gaps in the coverage. In developing them I am 
aware that for those of a modern cultural-geographic persuasion the exercise, 
and the concerns to develop geography as ‘spatial science’ that they address, will 
seem both naive and irrelevant to the discipline as they define it. To compound 
this alleged sin the emphasis on numerical argument will also seem old-
fashioned and, through some guilt-by-association argument, ‘positivist’. I do not 
accept either of these critiques. Following Gatrell (1983, page 7) I hope earnestly 
that the book will not be seen simply as ‘spatial science’, since I think the path 
charted here shows us that a concern for space transcends the artificial 
partitioning of geography into distinct research traditions and ultimately the 
artificial separation of disciplines in science. 
 
Work by psychologists (summarized in Golledge, 2002, page 3-4) seems to 
indicate that ‘geographers’ do ‘think differently’ from other academics, and 
suggests that this difference is characterized by an ability to reason about space 
and to represent its complexities graphically (mostly but not entirely by maps) in 
ways that are not matched elsewhere by any other discipline. I suggest that 
increasingly there is a need to include within the term ‘geographer’ not just those 
who have had the benefit of some instruction in the academic discipline, but also 
all those, scientists and the general public, who now routinely acquire and use 
spatial information through media such as GPS, GIS, satellite navigation systems, 
location based services, on-line mapping systems, virtual globes and even 
location-based games such as ‘geocaching’. All of these activities require 
individuals to demonstrate some measure of spatial literacy, which can be 
defined as the ability to think and act in any context that requires the recognition 
that location in space is important.  
 
Within this, spatial thinking has itself been defined by a group established by the 
(US) National Research Council (2006, page 12) as a collection of cognitive skills  
 



comprised of knowing concepts of space, using tools of representation, and 
reasoning processes. These three abilities – knowing spatial concepts, 
representing them and reasoning from and about them - are not the same as 
what, in his Presidential Address to the Association of American Geographers, 
Golledge (2002) refers to as knowledge of space, which is the accumulation of 
facts about the spatial arrangement and interactions comprising human-
environment relations. Rather it is knowledge about space, the recognition and 
elaboration of the relations among geographic primitives and advanced concepts 
derived from these primitives (such as arrangement, organization, distribution,  
pattern, shape, hierarchy, distance, direction, orientation, regionalization,  
categorization, reference frame, geographic association and so on) and their  
formal linking into theories and generalizations (Golledge, 2002, 1). Self-
evidently, other disciplines make use of spatial concepts; a ‘geographical’ 
perspective on them is not the only one that could be taken. In what follows I 
have taken it largely on the grounds of convenience and familiarity, making no 
claims that the exercises I present and the concepts they explore have any wider 
utility.

All this is fine, but it begs a very serious question, which is the identification of 
the spatial concepts, representations and styles of reasoning that are in some 
sense uniquely ‘geographic’. As a discipline in the UK we have not done well in 
this respect, but I doubt that this difficulty is at all unusual in any science.  For 
example, the revised 2003 Quality Assurance Agency for Higher Education’s 
Benchmark Statement for Geography (QAA, 2007) provides a long list of qualities 
that make up what the panel (of which the author was a member) considered to 
constitute ‘geographical understanding’. The list includes terms such as ‘spatial 
variation’, ‘scale’, ‘difference’ and ‘representation’ but at no point are these terms 
defined. Given the highly ’political’, contested nature of the task, and the need 
felt by the panel to incorporate at times very diverse views on the nature of 
academic geography, this is perhaps hardly surprising. As will be seen, this 
neglect in the UK contrasts markedly with concerns in the USA to develop both 
curricula and resources that in some sense promote spatial thinking (Beard et al., 
2008).

Any list is likely to be partial, incomplete, and highly contingent in time, but it 
further seems to me that, if as a discipline we claim to have some unique way of 
looking at the world, we owe it to our students and the general public to make 
some effort to say what this involves. Such an exercise can be justified for its 
own sake as an intellectual challenge, but, more practically, it can also be seen 
as an essential part of any development of curriculum that has educational aims 
related to spatial thinking. My view is that a clear identification and elaboration 
of the key spatial concepts is a necessary precursor to the development of 
curricula and materials. At best it might help; at worst it can do no harm.
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Four past attempts are worthy of discussion. First, in the early days of 
geography’s so-called ‘quantitative revolution’, John Nystuen published a short 
paper with the title Identification of some fundamental spatial concepts 
(Nystuen, 1963). This paper remains a landmark, not so much for its 
conclusions, but for the underlying and frequently misunderstood objective. This 
was not to provide a list of all the spatial concepts that we might want to 
include.  His project was far more ambitious. Part of his first sentence reads: to 
consider how many independent spatial concepts constitute a basis for the 
spatial point of view … and it goes on to talk about the complete minimum set of  
concepts necessary to the spatial point of view of the geographer.  Interestingly, 
his claimed motivation for the exercise was to clarify (his) objectives in studying 
geography and the main example he uses relates to a class being taught in a 
mosque.

The three primitives to emerge from Nystuen’s analysis were:

• Direction or orientation
• Distance
• Connection or relative position

with at least one extra ‘notion not considered’, which was

• Boundaries.

Nystuen then argued that given operational definitions these concepts represent 
the axioms of the spatial view with other words, such as pattern, accessibility,  
neighborhood, circulation, [etc] (are) compounds of these basic terms. In some 
respects this attempt is similar to work in dimensional analysis in which, for a 
given type of system, an attempt is made to define the minimum set of basic 
dimensions of which the mass, length and time (MLT) set often used in physical 
science is the best known. What is perhaps surprising about Nystuen’s list is that, 
although site/situation and location/place are considered, his minimum set does 
not include the notion of location which is perhaps the most quintessentially 
geographical concept of all.

A second attempt to list the essential spatial concepts is that by Golledge (2002) 
in which he lists 19 ‘things’ that constitute a partial list of thinking and reasoning 
processes that should help us determine what comprises Geographic Thinking 
and Reasoning (note his use of capitals). According to Golledge, a spatially 
literate person should be able to comprehend:

• Scale transformation;
• Transformation from one dimension to another;
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• Superordinate and subordinate relations and frames of reference 
(cardinal, relational, local, global);

• Spatial alignment;
• Distance effects;
• Spatial association;
• Orientation and direction;
• Regionalization/spatial classification;
• Clustering and dispersion;
• Spatial change and spread;
• Spatial and non-spatial hierarchy;
• Density and distance decay;
• Spatial shapes and patterns;
• Locations and places;
• Overlay and dissolve;
• Integration of geographic features (points, networks, regions);
• Spatial closure/interpolation;
• Proximity and adjacency;
• Spatial forms.

This list can be structured in at least two ways. First, borrowing from the US 
National Research Council definition of spatial literacy, with some difficulty we 
can recognize those that are primitive spatial concepts, those that involve 
representation, and those that involve reasoning about space. Second, as 
Golledge recognized, they can be structured into an hierarchy in which identity 
and location (a ‘something’ ‘somewhere’) sit at the base and are then used to 
derive ‘first order’/’simple spatial’ concepts such as ‘distance’ and ‘direction’, from 
which can be derived ‘second order’/’complex spatial’ concepts such as 
‘distribution’ and ‘association’. The most complete attempt to do this that I know 
of is that by Injeong Jo and Sarah Bednarz (Jo and Bednarz, 2009) in their 
taxonomy of spatial thinking. This is summarized in Table 1.1, where in addition 
I have attempted to group like concepts together.

Level Concepts
Non spatial concepts Identity/quality, magnitude/quantity
Primitives Place-specific identity, location 
Simple-spatial Distance, direction

Connection and linkage
Movement, transition
Boundary, region, shape
Reference frame, alignment
Adjacency
Enclosure

Complex-spatial Distribution, pattern, dispersion, 
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clustering, density
Diffusion
Dominance, hierarchy, network
Association
Overlay
Gradient, profile, relief
Scale
Projection
Buffer

Table 1.1: A hierarchy of non spatial and spatial concepts, based on Golledge 
(2002) and Jo and Bednarz (2009)

At the base of the hierarchy of spatial concepts is the primitive notion of a 
location, or, more properly, a set of locations and it is this notion that seems to 
me to be the most fundamental of all, since we can build from it most, if not all, 
of the remaining concepts in the list. 

A third and more recent list of spatial concepts is that by Janelle (undated, see 
also Janelle and Goodchild (2009)) in his essay on Spatial concepts and spatial  
reasoning in the social sciences: an agenda for undergraduate education and in 
what the context makes clear is not intended to be either a complete or even a 
minimal set, he lists the following eight concepts, noting that 

These concepts are demonstrable at all levels of space and time (from sub-
atomic to galactic, past through future, and microseconds to ions). They can be 
rendered understandable through simple illustrations to young children but they 
are also sufficiently engaging at advanced levels for thinking about scientific and 
social problems.

• Location --Understanding formal and informal methods of specifying 
"where";

• Distance -- The ability to reason from knowledge of relative position;
• Network -- Understanding the importance of connections;
• Neighborhood and Region -- Drawing inferences from spatial context;
• Scale -- Understanding spatial scale and its significance;
• Spatial Heterogeneity -- The implications of spatial variability;
• Spatial Dependence -- Understanding relationships across space;
• Objects and Fields -- Viewing phenomena as continuous in space-

time or as discrete objects.

The website http://www.spatial.ucsb.edu refers to these as the eight foundational 
spatial concepts.

11

http://www.spatial.ucsb.edu/
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#objects#objects
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#dependence#dependence
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#heterogeneity#heterogeneity
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#scale#scale
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#neighborhood#neighborhood
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#network#network
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#distance#distance
http://spatial.ucsb.edu/resources/teach-learn/concepts.php#location#location


Finally, the team at UCSB that created the website http://www.teachspatial.org 
have taken an interesting empirical approach by examining the contents of some 20 
sources (as of August, 2009) from which they extracted some 189 ‘unique terms’ 
from over 300 references or ‘assertions’. A frequency analysis shows that the 
emphasis given to each term varies strongly with discipline, whether geography, 
design, psychology, science education, linguistics, geosciences or social science, but 
an examination of the graphics used to report these differences also shows 
considerable agreement on some concepts. The 169 terms were classified by 
‘category’ as shown in Table 1.2, but the rationale behind this categorization isn’t 
explained. Nonetheless, the website represents by far the most complete and 
convenient analysis of the fundamental concepts of spatial thinking yet created.

Category Explanation Selected examples
of terms

General concepts … concerning spatial and 
spatiotemporal context

Space; place; field view; 
object view; continuity …

Primitives of identity The existence, nature 
and labeling of things 
in the world

Object; attribute; 
objects and fields …

Spatial relationships Comparative locations
of entities and their parts

Direction; location; 
connection; distribution; 
adjacency …

Measurement … of objects and of 
relationships and related
 issues

Shape; distance;
gradient; area; volume …

Spatial structures … as observed, and derived
 from measurement and 
analysis

Boundary; network; path; 
surface; region …

Dynamics Distinctly spatiotemporal
 concepts

Spatial interaction; 
diffusion; motion; force; frequency …

Representation External tools and 
mental processes

Map; perspective; map projection;
 point; line; polygon; grid;
 coordinate system …

Transformations … on data Scale; spatial interpolation; overlay; 
buffer …

Spatial inference Products of analysis 
and conclusions drawn

Spatial dependence; 
spatial heterogeneity; 
distance decay; 
areal association …

Table 1.2: Fundamental concepts of spatial thinking by category (after 
http://www.teachspatial.org/fundamental-concepts-spatial-thinking)
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It seems to me that each of these past attempts includes elements that any 
schema should have but that all lack a consistent framework into which the 
concepts can be placed. Several attempts to do this, such as those by Golledge 
(2002) and Jo and Bednarz (2009) are shown graphically at 
http://www.teachspatial.org/schemas where they are referred to as schemas. 
Figure 1.1, due to Karl Grossner at UCSB, is taken from the website and shows 
how spatial concepts can be mapped onto the NRC elements of spatial thinking.

Figure 1.1: Karl Grossner’s schema for spatial concepts (taken from 
http://www.teachspatial.org/nrc-elements-spatial-thinking)

Developing a schema

It should be apparent that there are many ways by which such schemas can be 
developed, with different views being appropriate for different purposes.  In 
what follows I develop a schema that helps clarify educational aims and intended 
learning outcomes that are appropriate for this workbook but that at the same 
time enables a ‘mapping’ into familiar ideas from the conventional geographic 
information science. The schema uses three organizing notions:

• A definition and view of ‘distance’ as a relation between primitives 
called  ‘locations’ based on the work of Gatrell (1983);
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• The familiar geometric classification of entities into points, lines, 
areas and fields; and 

• Gollege’s idea of a hierarchy of levels.

Towards a schema for spatial concepts (1): the relational view

Following the excellent little book by Gatrell (1983, Chapter 2), this can be 
explained using set theoretic concepts. A set is any well-defined collection of’ 
‘objects’, for example the set of F1 racing car teams that can be denoted:

F = {Brawn, Red Bull, Ferrari, BMW, … etc}

Note that we can define the elements of this set easily and unambiguously, but 
more serious problems might occur if we were to attempt to define, say, the set 
of all motor car manufacturers, where ambiguity might arise because the set 
itself is ‘fuzzy’ (what is a ‘car’?). Gatrell’s book elaborates on this and provides 
numerous examples, but for a set to be uniquely ‘geographic’ it seems to me that 
it must consist of a collection of locations, for example:

T = {the set of cities in UK}
B = {the set of offices belonging to the CBD of a city}
M = {the set of mountain tops over 1000m in UK}
C = {the set of English counties}

Note that this implies that we can recognize and identify the entities we call 
‘cities’, ‘offices’ and ‘counties’ but in themselves these are non-spatial concepts, 
simply ‘somethings’ that would occupy the first row of Table 1. Getting them 
onto the second row implies that we can add to this ‘something’ a ‘somewhere’ 
that creates a set of locations. Once defined, our locational sets allow us to build 
our geographies of interest by using the idea of a relation on a set.

With a set, C, consisting of, say, n elements can be defined its Cartesian product 
C X C as another set of all the ordered pairs {c1c1, c1,c2, …, cncn}. Such a set can 
be visualized as a square matrix with n rows and n columns and has n2 elements. 
A relation on the set is any subset of the Cartesian product set and can be 
defined in numerous ways. Let us take a simple example. Suppose that we are 
dealing with the set

C = {the set of English counties}

This is a set of locations. Its Cartesian product gives an ordered list of all 
possible pairs of counties of which two elements are, for example, (Derbyshire, 
Yorkshire) and (Derbyshire, Essex). If the relation that we are interested in it 
that of adjacency, coded ‘1’ if the two counties are adjacent (i.e. they share a 
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common boundary) and ‘0’ if they are not, then we can replace the adjacent pair 
of counties (Derbyshire, Yorkshire) with a ‘1’ and the pair (Derbyshire, Essex) 
that are not adjacent by a ‘0’. Notice that in this case we would almost certainly 
disallow a county from being adjacent to itself, making the relation irreflexive, 
and that in this example the relationship is symmetric, since (Yorkshire, 
Derbyshire) must also have the value ‘1’. Gatrell (1983, pages 15-24) provides 
further geographical examples.

Why is this important? The next step in Gatrell’s argument is critical. In our 
example we used adjacency as an appropriate relationship between the set of 
areas that make up the counties of England.  We could just as easily use some 
measure of their separation in space, making the chosen relation a ‘distance’. 
Operationally, this ‘distance’ could be measured in any of a number of ways, for 
example from the nearest points on the county boundaries, from some centroids 
in each county, or by the time taken to drive from one county to the other. 
Viewed in his way, the adjacency relation we used in the example is also a 
measure of geographical ‘distance’; as Gatrell observes there are many possible 
concepts of distance best summarized in the quotation he gives from the well-
known columnist Katherine Whitehorn writing in the Observer newspaper many 
years ago (21st December 1980):

‘How far is it to Bethlehem? Not very far, we used to pipe as children. Depends 
on your point of view, if you ask me. How many shopping days to Christmas,  
how long is a piece of time and whether Bethlehem is £90, five hours flying 
time or just a prayer away is entirely a matter of opinion’

Perhaps the most straightforward ‘distance’ we can recognize is the Euclidean 
straight line in a metric space between any two point locations, i and j, each 
defined by their (x, y) co-ordinates:

( ) ( ) 22
jijiij yyxxd −+−=

The essential point here is that the complete set of distances, perhaps 
represented in matrix form as D, formed by the Cartesian product of the original 
set of locations itself defines a ‘space’. Euclidean distances are the shortest paths 
between the locations and have the underlying properties of non-negativity (no 
dij is less than zero), reflexivity (the distance to a location from the same location 
is 0), symmetry (dij  = dji), and obey the so-called triangle inequality. This states 
that the length of the longest side of the triangle is less than the sum of the 
lengths of the two shorter sides. The space they define is a Euclidean plane, 
which in turn is an example of a metric space. What follows from this is that 
other types of location sets and other concepts of relation define other types of  
both metric and non-metric spaces. Much of the rest of Gatrell’s book shows how 
such spaces can be extracted from data on the relations between location sets 
and then examined and visualized. An obvious and relatively straightforward 
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example is where the scale of a study means that we have to consider the 
earth’s curvature, such that or shortest path is now a Great Circle. Other metric 
spaces are also possible as are spaces that are decidedly non-metric. Perhaps 
the best known work exploring these spaces is that by Michael Worboys and his 
collaborators (Worboys, 1996; 2001; Worboys, Mason and Lingham, 1998; 
Worboys, Duckham and Kulik, 2004). Many of the concepts applied to area and 
networks (see below) relate primarily to spaces created by a ‘distance’ that is 
simply an adjacency or link, so the space is essentially that of a lattice or 
network. 

These non-Euclidean spaces are important because they often are those in which 
people think and act in ways that require the recognition that location in some 
space is important. In other words they are a key component of spatial literacy, 
and analysis using them provides a way into what, following the naïve physics 
manifesto of Patrick Hayes (1978), Egenhofer and Mark (1995) outlined as its 
naïve geography equivalent. To see this link and give an idea of the flavour of 
their proposal, it is worth listing the admittedly incomplete list of fourteen 
elements of naïve geography they recognize:

• Naive geographic space is two-dimensional;
• The earth is flat;
• Maps are more real than experience;
• Geographic entities are ontologically different from enlarged table-

top objects; 
• Geographic space and time are tightly coupled;
• Geographic information is frequently incomplete; 
• People use multiple conceptualizations of geographic space; 
• Geographic space has multiple levels of detail;
• Boundaries are sometimes entities, sometimes not; 
• Topology matters, metric refines;
• People have biases toward north-south and east-west directions; 
• Distances are asymmetric;
• Distance inferences are local, not global; 
• Distances don't add up easily.

This list makes it clear that analysis in spaces other than the simple Euclidean is 
not and will not be easy, and in some sense standard representations of space in 
GIS software and by conventional mapping do not help this. Notable exceptions 
are the work by Worboys and his colleagues cited above, work modifying 
standard spatial analytical methods for use across a network representation, and 
work using cartograms and related devices.

Towards a schema for spatial concepts (2): the geometric view
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The development thus far has led to the notion of sets of geographical primitives 
we call locations, together with the idea that the spaces to which the spatial 
concepts refer are generated as some sort of ‘distance’ relation between 
elements of a set of such locations. 

This simple idea can be taken further by introducing the by-now familiar notion 
that geographic entities can be represented and classified by their fundamental 
dimension of length, L, into discrete objects called points (length dimension L0), 
lines (L1), areas (L2) and continuous, self-defining fields (L3). This classification 
has been used many times in the literatures of cartography and spatial analysis 
(see for example, Unwin, 1981). What becomes clear is that each geometry 
carries with it a type of space within which in turn there is a set of possible 
spatial concepts of interest. 

Towards a schema for spatial concepts (3): hierarchies of concepts

So, we now have the idea of different geometric/geographic object types, each 
generating a type of space within which different spatial concepts can be 
recognized. The final step, following Golledge’s (2002) schema, is to recognize 
within each type of space a division of concepts that are appropriate for thinking 
about these spaces into primitive/first order, complex/second order and a lose 
group that might be called analytical/ third order. This distinction between levels 
is similar to that made by Golledge (see above), but it is not perhaps as easy to 
make in practice as it might seem in theory. 

At the base sit some primitive/first order notions. For example if the entity is a 
point the appropriate primitives are its location in some reference 
frame/projection and its magnitude. If it is a line object then its magnitude is 
what we call ‘length’ but we also must add its direction/orientation. Similarly for 
an area object the primitives are is its boundary and shape and for a field we 
have its ‘height’ at some location.

Complex/second order concepts take these primitives and combine them in 
some way to create new emergent concepts.  Combinations of point objects 
allow us to think about spatial concepts such as distribution, dispersion, and 
pattern and bundles of line objects gives notions of linkage/connection into 
networks. Collections of area objects provide us with notions of adjacency, 
fragmentation, enclosure, pattern/ clustering (autocorrelation), hierarchy, 
and dominance. When we deal with more than one sample ‘height’ of a 
continuous field, second order concepts such as continuity, gradient, profile, 
relief, and trend appear.

Finally, at the analytical/third order we have a series of concepts that emerge as 
a consequence of some analysis such as point process models, the ideas of 
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stationarity and anisotropy/isotropy as applied to point objects, shortest/least 
cost paths and network generation models, areal association, spatial interaction 
models and tessellations as related to area objects, and equivalent vector fields, 
least ‘cost’ paths, and surface networks derived from fields. In a GIS 
environment many of the standard operations entail some form of association or 
transformation between objects of different spatial dimension. Examples include 
point in polygon determination (points and areas), overlay (two sets of area 
objects), density estimation (point to field), buffering (point line or area to area), 
and so on. Whether these operations should be included as ‘concepts’ is perhaps 
moot.

The complete schema is shown as Table 1.3. 

Nature of
Element

Relation Space Appropriate
Concepts

Point objects Distance Metric (especially
Euclidean)

Primitive/First 
order
location, magnitude
reference frame, 
projection
Complex/Second 
order
distribution, 
dispersion, pattern, 
clustering, density.
Analytical/Third 
order
Point process models, 
stationarity, 
anisotropy/isotropy

Line objects Connection Network Primitive/First 
order
length, direction
Complex/Second 
order
linkage/connection, 
Analytical/Third 
Order
network generation 
models
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Area objects Contiguity/proximity Lattice Primitive/First 
order
boundary, area, 
shape, region,
Complex/Second 
order
adjacency,
fragmentation, 
enclosure,  pattern/ 
clustering 
(autocorrelation), 
hierarchy, dominance, 
scale
Analytical/Third 
Order
models of areal 
association, spatial 
interaction

Field Distance and 
magnitude

Euclidean metric Primitive/First 
order
height
Complex/Second 
order
continuity, gradient,
profile, relief
Analytical/Third 
order
vector fields, trend, 
surface networks, 
semi-variogram

Table 1.3: Elements, relations, spaces and spatial concepts.

Evidently and perhaps obviously, several of the concepts, notably pattern occur 
more than once in the table and, perhaps significantly, the only three concepts in 
Golledge’s list that do not appear are association, which is essentially non-spatial, 
and movement/transition and diffusion which involve some notion of temporality. 

1.2 Educational Challenges and structure

It is one thing to list and categorize these concepts, quite another to identify 
appropriate intended learning outcomes (ILO) for them, and to develop 
approaches and resources that might facilitate students in some sense ‘learning’ 
them. In part this may simply be that in the past we have not tried very hard to 
focus on them in our teaching but it is perhaps also related to their somewhat 
abstract nature.  There is no single ‘correct’ or even optimal way to navigate 
through the entries in this table, since much will depend on the overall aims of 
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any curriculum that makes use of it. Table 1.4 summarises the offerings in this 
Workbook and can be used to suggest some possible route ways through them.

No Exercise Geometry Space Order
1 Location - where do you live, and 

what do you live in or on?
Point, line 
Area, even 
field

All Primitive

2 Scale and representation  Point, line, 
area and 
field

All Primitive (?)

3 Adjacency and relations 
between elements of a set

Area Lattice/
Adjacency

Complex

4 Conceptions of distance Line Metric Complex
5 Some complications with ‘distance’Adjacency Metric

and non-Metric
Complex

6 Projection and location Points, lines and 
areas

Metric Primitive

7 Transforming locations Points Euclidean/
Metric

Primitive

8 Dotting the map Points Euclidean/
Metric

Complex

9 Drawing your own pin map Points Euclidean/
Metric

Complex

10 Proportionate symbol maps Points Euclidean/
Metric

Complex

11 Centrography Points Euclidean/
Metric

Complex

12 Nearest neighbor statistics Points Euclidean/
Metric

Complex & 
Analytical

13 Ripley’s K statistic Points Euclidean/
Metric

Complex & 
Analytical

14 Lines on maps Lines Metric Primitive
15 Measuring length Lines Metric Primitive
16 Fractals Lines Metric Primitive & 

analytical
17 Direction Lines Metric Primitive
18 Analyzing tree networks Lines Network Complex
19 Analyzing networks Lines Network Complex
20 Types of areas on maps Areas Lattice Primitive
21 Colour maps for area objects Areas Lattice Primitive
22 Choropleth maps for area

objects
Areas Lattice Primitive

23 Measuring area Areas Euclidean/
Metric

Primitive

24 What do we mean by
 ‘shape’?

Areas Euclidean/
Metric

Primitive
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25 Mapping area data using 
OpenGeoDa™

Areas Lattice Primitive

26 Using OpenGeoDa™ to 
compute a spatial weights 
matrix

Areas Lattice/
adjacency

Complex

27 Spatial autocorrelation and patternAreas Lattice/
adjacency

Complex

28 Global spatial autocorrelation using 
OpenGeoDa™

Areas Lattice/
adjacency

Complex

29 Continuity and isolining 
a field

Field Euclidean/
Metric

Complex/
second order

30 Isolining by machine Field Euclidean/
Metric

Complex/
second order

31 Visualizing fields Field Euclidean/
Metric

Complex/
second order

32 Trends in fields Field Euclidean/
Metric

Complex/
second order

33 Spatial structure and spatial 
interpolation by kriging

Field Euclidean/
Metric

Complex/
second order
& analytical/
third order

34 Spatial structure from the 
semi-variogram model

Field Euclidean/
Metric

Analytical/
third order

Table 1.4: The workbook exercises classified by geometry, space and hierarchical level.

One might order a curriculum much as in this workbook,  using the geometry 
employed from ‘points’ through ‘lines’ and ‘areas’ to ‘fields’, treating the nature of 
the space and the hierarchical level as secondary.  This has the merit of simplicity 
and has been used many times by textbook authors covering these and similar 
materials. More ambitious approaches might be tempted to use the nature of the 
spaces progressing from simple adjacency lattices through networks to metric and 
Euclidean spaces. A third approach would be to work from primitive/first order 
concepts through complex/second order ones to those that involve analysis at the 
third order. A moment’s thought will indicate that it would be a mistake to equate 
these hierarchical levels with specific ages/levels in the educational system. As 
Golledge. March and Battersby (2008, Table 10) recognize, many of these concepts 
can and should be taught over a wide range of ‘levels’ in education from 
kindergarten, through the US grade system and its equivalents elsewhere, to at least 
Masters degree. Differentiation in this is possible by the choice of learning outcomes 
appropriate to the level of the teaching and of the sort that constitute the greater 
part of the UCGIS Body of Knowledge (DeMers, 2009).
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Spatial concepts can be listed and taught in the lecture theatre, but, consistent 
with a constructivist stance to learning, my view is that they are best introduced 
to students through simple, illustrative practical exercises in which they are 
operationalized with real data:

Tell me, I forget
Show me, I remember

Involve me, I understand

This view is to an extent counter to much practice in the discipline, which uses 
the practical class as a vehicle for teaching skills associated with various methods 
of investigation such as mapping, GIS, and statistical analysis. In their discussion 
of the use of ‘practicals’ and projects in higher education in geography, Gold et 
al. (1991, pages 36-58) note that confining use of active learning to teaching 
techniques is a bad teaching strategy that is of relatively recent origin. 
Traditional practical teaching at first followed the approach introduced into the 
universities in the nineteenth century, when students were encouraged to repeat 
many of the classic experiments of science with a view primarily to 
understanding the underlying concepts. Acquisition of the necessary technical 
skills wasn’t the main objective but rather it was a bonus that accrued from 
following the experiments. If in a UK secondary school you followed a GCSE 
course in either physics or chemistry you will be familiar with this approach. At 
first, practical work in higher education in geography addressed similar objectives 
well into the 1960s with what was considered at the time to be core substantive 
materials such as cartography and land survey taught using the practical 
method. Since then a whole raft of new approaches to knowledge acquisition 
using statistical analysis, remote sensing, GIS and so on have been seen as 
necessary skills that students should acquire and the ‘practical’ class has had its 
emphasis changed from a method for teaching substantive geography to one 
whose primary intended outcomes are associated with learning technical and 
transferable skills. A similar change can also be seen in the use of the field class. 
All this is not to argue against such teaching, but against the artificial separation 
between teaching about techniques and teaching substantive geography; as is 
attempted in this Workbook, ‘learning by doing’ can and should be applied over 
the entire curriculum. Griffith (1987, 1992) would seem to agree.

What follows is a Workbook of educational materials that use simple numerical 
exercises with ‘freeware’ software systems to explore some of the fundamental 
spatial concepts identified in Section 1.1. Some are very short, more of the 
nature of what elsewhere are called ‘thought exercises’ (O’Sullivan and Unwin, 
2010, page 5) in which students are asked to think through something and then 
reflect on what this illustrates. Others ask students to use the vast information 
source that is the World Wide Web (WWW) to find some illustrative materials. 
From this it is a short step to exercises that use specific software and data to 
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address and illustrate particular concepts. Where relevant sample data are 
suggested and should be readily available from standard WWW sources. 

That most involve the use of ‘the steel bars of numbers’ to illustrate the concepts 
is deliberate and it explains the title ‘Numbers aren’t nasty’ I have chosen for this 
Workbook. Regrettably, many in contemporary academic geography seem to 
think that numbers are nasty, with all sorts of associated guilt , not least of 
which are a lack of imagination and a false association with some caricature the 
people concerned have in their minds of ‘positivism’. 

Although most of the exercises have been ‘road tested’, sometimes many times, 
some are untested, created to give some sort of continuity to this workbook. 
Whether ‘tried and tested’ or new, instructors will almost certainly need to adapt 
them to address different intended learning outcomes or meet local 
circumstances and, as with any purchased goods, caveat emptor applies. In 
particular the suggested student briefings are only indicative of what might be 
used. No guidance or suggestions are made for how these materials might be 
used in specific curriculums or at what level. Any instructor, and hopefully there 
will be some, wishing to incorporate any of these materials into their teaching 
will be perfectly capable of assessing when and how best to use them. Although 
the Workbook covers a range of spatial concepts, there are some obvious gaps.

Each exercise has been structured in the same way, with a standard format that 
contains:

1. Aims and introduction
2. Geometry, space and level
3. Intended learning outcomes
4. Resources needed
5. Suggested student briefing
6. Comment/answers
7. Suggestions for modification
8. References

In this (1) outlines which of the spatial concepts are addressed by the exercise, 
(2) provides a key to where the exercise fits in the schema developed in this 
Chapter. Very importantly (3) narrows down the aims in (1) to some specific 
learning outcomes. (4) lists the necessary resources whilst (5) contains a 
suggested student briefing. In this part I have tried hard to avoid text that reads 
like a simple sequence of operations (press this, type that etc) that lead to a 
single desired outcome. Quite apart from the sheer boredom of assessing such 
work and the opportunities for lazy students to plagiarize the work of others, I 
fail to see what this type of briefing usually achieves. My preference is for what 
in the past has been called ‘open-ending’, leading to different results, either 
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through different pathways or through the use of different input information 
(Unwin, 1980). I realize that not all the suggested exercises manage to do this 
as effectively as I would have liked. Typically these latter examples are where 
software such as CRIMESTAT III and OpenGeoDa™ are being used to calculate 
values for some test statistic and the suggested briefing is a blow by blow 
account of how to achieve the intended end product.  My defence at the 
accusation of an apparent inconsistency with the ideas expressed in Unwin 
(1980) is that knowing what to do in such circumstances is pretty useless unless 
one also knows how to do it. ‘Open-ended’ alternatives can easily be developed 
once the work flow has been established. Finally, Sections (6) and (7) provide an 
opportunity for reflection on what use of the exercise has shown. Readers – if 
there are any – familiar with my texts published in 1981, 2003 and 2010 will 
recognize the origins of some of these materials. I can only apologise if they 
seem ‘old hat’ and express the hope that there is value in having them collected 
under the same, more convenient, roof. 

Chapter 2 deals with the spatial primitives of location, distance, space and 
projection/reference frame together with the standard geometric classification of 
objects. Chapter 3 provides exercises mostly based in the Crimestat III package 
that explore second order concepts such as dispersion, density and pattern using 
as it examples point located objects. Chapter 4 looks at line objects and the 
associated concepts of length, direction and connection. Chapter 5 uses the 
OpenGeoda™ package to examine concepts associated with area objects such as 
fragmentation and pattern (autocorrelation). Chapter 6 provides a series of 
exercises, some using 3Dfield ™, associated with self-defining continuous fields 
such as continuity and trend. Finally, Chapter 7 gives a few pointers to where 
additional supporting materials might be found.
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Chapter 2: Location, Spaces and Distance

2.1 Aims and introduction

Chapter 1 outlined a schema for spatial concepts leading to the notion that for 
point objects the appropriate relation is a distance, usually, but not always in a 
Euclidean metric space. First order concepts in such a space are location, 
magnitude and the reference frame and projection. In this chapter we develop 
student’s appreciation of the ‘first order’ basic spatial concepts of location, scale, 
adjacency, distance, and projection as well as the variety of ways by which they 
can be ‘measured’ in different ‘spaces’.

2.2 Exercise (1): Location - where do you live, and what do 
you live in or on?

Aims and introduction

This is a simple, almost trivial, thought exercise that addresses the variety of 
ways by which we locate objects but it leads into such interesting and potentially 
rich discussion. I have used it many times as an ice-breaker at the start of 
courses in geographic information science.

Geometry, space and level

With luck responses will use each of the geometries we recognize (point, line and 
area for certain, possibly even field) and so the idea that how we specify our 
location can generate different types of space. The notion lies at the base of our 
hierarchy as primitive/first order.

Intended learning outcomes

After doing this exercise, students will:

• Be able to list many ways by which we locate ourselves and objects;
• Understand that different approaches are used for different 

purposes;
• Understand that the basic question where? Can be answered by 

specifying a point location, a line object (such as a street) or a 
named area object;

• Note how the resolution of these systems varies;
• Appreciate that each approach implies location in some different 

space;
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• Understand that analyses will be constrained by the nature of these 
spaces.

Resources needed

Pencil and paper/whiteboard/OHP to taste

Suggested student briefing

1. Ask the class to take five minutes to write down as many ways as they 
can think of how they would answer someone who asks ‘where do you 
live’?

Comment/answers

The main purpose of the exercise is to lubricate a discussion that should address 
all the intended learning outcomes. There are many ways of locating objects and 
it is useful to collate a lost of all those suggested. Latitude and longitude, some 
grid coordinates in a National or State projection, house number with street 
name, a named area of a city and a description of how to get to the residence 
are examples among many possibilities.  All may be considered aliases of each 
other, and all have their differing uses and potential resolution. Using county or 
city name, census tract, post/zip code, telephone area code, or regional names 
are also ways of identifying location, but with variable resolutions. Precise 
numerical location by latitude/longitude or even in a projection system such as 
UTM may be necessary for mapping and analysis but are not often used in 
everyday discourse.

 Waldo Tobler (2002) provides an amusing anecdote that has a serious 
implication as follows: 

“Peter Gould and I conducted a little experiment in the late 1980s to 
demonstrate this. He sent envelopes on which he had typed my name along with 
the geographical coordinates of my house to thirty-four colleagues throughout 
the world. The envelopes contained only a blank piece of paper. The instructions 
to his friends were to add stamps and put the envelopes into the local postal  
system”. 

Tobler reports that just four of these letters arrived but in every case they were 
delivered to his university office because of the ‘Professor’ title on the envelopes. 
He notes that some of the postal clerks added the name ‘Santa Barbara’ to them 
and that some of the letters were routed through unexpected places. 

These differing methods can be converted from one to the other, or converted to 
latitude and longitude, with a precision that depends on their resolution. 
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Suggestions for modification

Three simple additions to this exercise are:

(1) Use a www location finding utility such as in UK the one at 
http://www.streetmap.co.uk  to perform searches using each and every 
georeference the system uses (street name, telephone code, OS (x, y), post 
code, place name and latitude/longitude);

(2) Qualify the question by some imagined location, such as overseas, in your 
country, and in your locality. The first will demonstrate that the same place can 
be georeferenced in many ways, whilst the second shows that the one used is 
frequently context dependent;

(3) Make use of a class set of GPS receivers, or, with an eye to the immediate 
future, location-aware mobile/cell phones or digital cameras capable of geo-
tagging. Obvious extensions might include student field class exercises based 
around activities such as those reported at http://confluence.org to create a 
benchmark photographic record of a field area, some form of GPS drawing (see 
http://www.gpsdrawing.com), and an activity based on the sport known as 
geocaching (see http://www.geocaching.com).
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2.3 Exercise (2): Scale and representation  

Aims and introduction

A real difficulty that geography has is the considerable range of spatial scales 
that are of interest, from the relatively small spaces of low-order drainage basins 
and towns through to the global. This exercise attempts to reinforce the idea of 
representation of different features on maps (and within GIS data bases) being 
contingent on the scale at which we chose to observe them. In introducing the 
exercise it is wise to make it clear that both a digital data base description and 
an analogue map of the same entities are alike in that both are representations 
of some underlying reality. Using on-screen or paper maps just makes life a little 
easier.

Geometry, space and level

Again, all geometric object types should be addressed and the influence of scale 
on this representation noted. Using standard maps implies that we are in a 
metric, even Euclidean, space and, in so far as it relates to the reference frame 
used the level is, arguably, primitive. 

Intended learning outcomes

After completing this exercise students will

• Understand that in geography the scale at which we examine phenomena 
affects what is represented and this applied both in analogue and digital 
representations;

• Because of this, all representations generalize by selection, changing the 
nature of the entities, and how they are mapped;

• The intended use of the representation depend on the intended use of 
that information;

• The extreme difficulty of digital representation of entities that would 
sustain mapping and analysis over a range of scales.

Resources needed

Web browser or series of appropriate paper maps

Suggested student briefing

1. Go to http://www.streetmap.co.uk. This is one of several websites that 
provide map extracts over a range of scales. At the window enter either 
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the name or the postcode of a location within Great Britain with which you 
are familiar;

2. The result will be that you arrive at a topographic map of the area around 
your chosen point at the LandRanger scale of 1:50,000. The website calls 
this ‘Zoom level 4’.  There is an icon that enables you to view a wider area 
and the usual on-screen tools to allow you to pan around. Below and to 
the left of the map is a very useful little icon that allows access to pages 
that give the full key to each of the map series that are available;

3. You can now step up and down scale by clicking on the zoom tool to the 
right of the map display. Quickly ensure that you can access the 1:25,000 
(Zoom level 3) and 1:5000 (Zoom level 2) larger scales as well as the 
1:100,000 (Zoom level 5) and 1:200,000 (Zoom level 6) mapping;

 
4. The exercise is simple. For the table of features and map scales on Table 

2.1, enter a code to say how the feature is represented. It will help if you 
use codes as P (point feature) L (line feature), A (area object), F (field) 
and M for features that are ‘missing’ at that scale. Some entities may be 
represented by more than one such geometric primitive. In each case is 
the representation true to scale, or has the selected entity been 
‘symbolized’ in some way? At this stage you might also too describe the 
cartographic representation of the entity — what colour, line style or font 
is used and why? 

Feature Type 1:5000 1:25000 1:50000 1:100000 1:200000
Roads
Houses
Rivers
Land height above sea 
level
Public house (‘pub’)

Table 2.1 Blank recording table

Comment/answers

The table can be developed to look something like Table 2.2.

Feature 
Type

1:5000 1:25000 1:50000 1:100000 1:200000

Roads L, named 
and 
coloured. 
ALL shown

L, with 
coloured 
status given. 
ALL shown

L, size 
exaggerated, 
coloured by 
status

L,  size 
very 
exaggerate
d, coloured 

L, size very 
exaggerated, 
coloured by 
status
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by status
Houses A, Grey 

colour
A, each 
building 
footprint 
correctly 
sized

A, with some 
point symbols 
for specifics

P & A
Point 
symbols 
and grey 
stipple in 
towns

P&A
Point symbols 
and grey stipple 
in towns

Rivers L, blue, 
but only 
the 
largest 
shown

L, Blue 
lines

L, Blue lines L,  blue 
lines, 
generalize
d

L, blue lines, 
generalized

Land 
height 
above sea 
level

M F, contours 
and spot 
heights

F, contours 
and spot 
heights

M M

Public 
house 
(‘pub’)

M, but 
some 
urban 
land use 
shown 
coloured 
as A

M, this is 
noteworthy!

P
PH symbol

M M

Table 2.2 Suggested solution?

The key points here are related to the intended learning outcomes. The entities 
shown are a selection that depends on map scale and function. The geometric 
character of this representation (point, line, area, field) changes according to the 
mapping scale, with many being exaggerated and/or symbolized at smaller scale 
mappings. 

Suggestions for modification

As presented the exercise combines all the outcomes into the one analysis, but 
an obvious ploy is to create separate tables for the selection and character and 
cartographic representation.

The same exercise can use other similar websites, of which in UK that belonging 
to the Ordnance Survey is the most obvious. It is both harder to use and more 
volatile that the one suggested. The entire issue of representation in geography 
is explored in a series of essays edited by Fisher and Unwin (1995).
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2.4 Exercise (3): Adjacency and relations between elements 
of a set

Aims and introduction

How far apart are Derbyshire, Yorkshire and Essex? This exercise uses Gatrell’s 
development of the spatial concept of adjacency as a relation between elements 
(objects) of a set (Gatrell, 1983, see Chapter 1).
 
Intended learning outcomes

After completing this exercise students will:

• Understand that the spatial concept of adjacency is an example of a 
relation on a set of area objects and can be viewed as a measure of 
‘distance’ between area objects;

• These distances themselves define a ‘space’;
• Understand that the relation can be described by a geographic structure 

matrix of the sort that frequently occurs in quantitative analysis;
• Be able to develop such a matrix from a map of planar enforced 

contiguous zones;
• Be able to state some of the properties of this matrix.

Geometry, space and level

Here we deal with areas in a space generated by the adjacency relationship. 
Since we deal with numerous area objects, the level is complex/second order.

Resources needed

Maps showing area objects such as States, Counties, and so on. Take care to 
ensure that no more than 10-15 zones are represented. For recording the results 
it is useful for students to use Excel or even the ‘table’ function in WORD as a 
way of keeping track. Dividers for measuring lengths.

Suggested student briefing

1. Find a small pattern of zones, such as the Standard Economic Regions of 
England and Wales or a contiguous set of State of the USA or Counties in 
State and use it to create a table (matrix) of adjacencies in which each 
element is coded ‘1’ if the zones are adjacent and ‘0’ otherwise. This is 
done by listing the areas as both rows and columns of the matrix in 
which the same ordering is used for both the rows and the columns. 
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For example, Figure 2.1 below shows the eight ‘Standard Statistical’ 
regions used by UK government in the period 1945 to 1994.

Figure 2.1 The 19945-1994 Standard Statistical regions of England. 1: North 2: 
North West 3:Yorkshire and Humberside 4: West Midlands 5:East Midlands 6: 

East Anglia  7: South West  and 8: South East

This yields a matrix of adjacencies as Table 2.3.

1 2 3 4 5 6 7 8
1 North * 1 1 0 0 0 0 0
2 North West 1 * 1 1 1 0 0 0
3 Yorks 1 1 * 0 1 0 0 0
4 West Mids 0  1 0 * 1 0 1 0
5 East Mids 0 1 1 1 * 1 0 1
6 East Anglia 0 0 0 0 1 * 0 1
7 South West 0 0 0 1 0 0 * 1
8 South East 0 0 0 0 1 1 1 *

Table 2.3 England and Wales Standard Region adjacencies

This sort of matrix is an example of what in the literature is called a 
‘geographic structure matrix’ and it is usually symbolized by a bold capital 
W. Each element of the matrix is denoted wij in which the subscript ‘i’ is 
the row number and the subscript ‘j’ is the column. Thus the entry at row 
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5, column 6 is a ‘1’, which tells us that zones 5 (East Midlands) and 6 
(East Anglia) are adjacent. This type of matrix is much used in spatial 
statistical analysis, and we will encounter it again.

2. Why have we placed stars down the so-called principal diagonal of this 
matrix? Is the matrix symmetric (a mirror image) about this principle 
diagonal? If it is, why?

3.  Can we improve on this definition? Use your map to develop a definition 
of adjacency that is a ratio-scaled number, such as the shared boundary 
length (measure this by stepping with dividers). Is the resulting matrix 
still symmetric?

4. Finally, develop this further for each zone by re-expressing this as a 
proportion of the total boundary length of that zone. Now, is this matrix 
symmetric and if not, why not? 

Comment/answers

See Section 1.2 for a discussion. The key issues to develop are

a) That in this example we define the spatial concept of adjacency as a 
relationship between the elements (the zones) of a set (The Statistical 
Regions). In the first case the concept is expressed as a binary (yes/no) but 
as the second part illustrates we could expand this to an ordinal or ratio 
scaled number that expresses the strength of the adjacency;

b) Adjacency is a sort of ‘distance’ between the zones in which the distance is 
defined in a ‘space’ generated by these adjacency values;

The stars indicate that we need to make an operational decision as to whether or 
not any zone can be considered adjacent to itself and of course the matrix is 
symmetric because of the way we define adjacency as sharing a common 
boundary. The same applied to the length of common boundary, but by 
expressing this as a proportion of each local area’s total boundary length we lose 
the symmetry.

Suggestions for modification

Once developed there is a great deal of exploration possible related to the 
properties of this type of adjacency matrix but these require more advanced 
mathematics:
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a) Using software such as MINITAB™, Excel, or a few lines of simple code, 
the W matrix can be ’powered’ to explore the adjacency relationship at 
differing lags as described in detail by Unwin (1981), Tinkler (1977) and 
Garner and Street (1978);

b) At more advanced level, students can be introduced by way of simple 
adjacency to the more general types of spatial weights matrices and their 
properties, including those of their eigensystems. The literature on this is 
summarized in O’Sullivan and Unwin (2010, pages 200-205). A key point 
to make here is that the W-matrix is really an expression of a hypothesis 
about what is important in the geography chosen. Exercise (26) uses 
some public domain software to compute and store a W-matrix.

36



2.5 Exercise (4): Conceptions of distance

Aims and introduction

As we have seen adjacency is an example of a relation between elements of a 
set of locations and in the last exercise our locations were planar enforced 
named area objects. This exercise uses a journey in London (England) but could 
easily be modified for any other city with which you are familiar using similar 
resources. 

Geometry, space and level

The geometries of these journeys are essentially metric but the spaces in which 
they take place will not always be Euclidean. Distance is a complex/second order 
concept.

Intended learning outcomes

After completing this exercise students will:

• Understand that a conventional distance, as measured by a Crow’s flying, 
straight line is an example of a relation on a set;

• Realize that in human behaviour we seldom have access to these straight 
line distances and that a motor car would be constrained to a network 
distance which, if a taxi cab,  would be the shortest path between the two 
locations;

• Be able to generalize this further into cost and time distances;
• Have a view as to which would be most appropriate in an applied 

problem;
• Again, realize that these various relations each produce a ‘space’;

Resources needed

Web browser

Suggested student briefing

Our objective is to get from Euston main-line railway station to Waterloo main-
line station using different transport methods and measuring the ‘distance’ 
between these two locations in different ways. Throughout note that we are 
dealing with a set consisting of two locations {Euston station, Waterloo station} 
and exploring possible specifications of a relation on this set.
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1. First of all, what is the straight line distance between these stations? A 
suitable map can be found at the Transport for London website: 
http://www.tfl.gov.uk/assets/downloads/Central-London-Day-Bus-Map.pdf

2. You will need to use a ruler and knowledge of the scale of the map to 
answer this. As an alternative use Google Earth™ to find both railway 
stations and then use the ‘ruler’ in ‘tools’ to find the ‘straight line’ distance.

3. Now suppose you were to hire a taxi cab for the same journey. The driver 
has a choice of literally hundreds of ways through this network, each with 
its own network distance, but they will normally take the shortest route. 
This can also by found using a Google™ system in this case Google™ maps 
and the supplied ‘get directions’ function. You’d probably be concerned with 
how much this might cost you to get a cost distance. There is a schedule of 
taxi fairs for London at 
http://www.tfl.gov.uk/gettingaround/taxisandminicabs/taxis/1140.aspx that 
you can use to estimate this;

4. Finally, of course, many Londoners would make the same journey by 
underground (the famous ‘Tube’) at a standard fare for a journey in what’s 
called Zone 1. The ‘distance’ of concern would almost certainly be the time 
the journey takes. The same website has a trip choice aid that will estimate 
this for you at http://www.tfl.gov.uk/gettingaround/default.aspx, and you 
can see which tube line is involved by looking at 
http://www.tfl.gov.uk/assets/downloads/standard-tube-map.pdf

5. So in an applied problem – getting from station to station – which distance 
is appropriate: straight line, network shortest path, some other route 
through the road network, cost distance, or the ‘cost’ in time taken?

Comment/answers

I make it about 3.0km in a straight line, but a taxi will need to go maybe 4.85km 
at a cost of around £10. Taking the ‘Tube’ costs a lot less and is a fairly easy trip 
on the so-called Northern Line with six intermediate stops. The Transport for 
London website suggests this would take about 10 minutes. 

Suggestions for modification

At some cost in extra student effort, why not build up a W matrix of a selected 
‘distance’ between a selection of the main line termini in London (for example 
Liverpool Street, St. Pancras, Euston, Paddington, Victoria, Waterloo)? The 
easiest way is probably via Transport for London’s journey planner and this will 
reinforce understanding of the concept. 
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2.6 Exercise (5): Some complications with ‘distance’

Aims and introduction

This exercise is taken fairly directly from papers by Michael Worboys in which he 
explores some of the basic properties of metric and non-metric spaces. 

Geometry, space and level

The geometry is that of adjacency in metric and non-metric spaces, with the 
relation measured in some notion of the complex/second order concept of 
distance.

Intended learning outcomes

After completing this exercise students will:

• Understand that it is possible to change definitions of ‘distance’ and thus 
the properties of the spaces created;

• Realize that different ‘spaces’ are appropriate for different analyses and 
that ‘network distances’ are often more appropriate than straight line 
ones.

• Be able to develop a simple measure of the ’influence‘ of nodes in a 
network.

Resources needed

Tables of road distances between a sample of places as often found in motoring 
Atlases.

Suggested student briefing

1. Using a standard road atlas that includes a table/matrix of the road 
distances between towns for your country and select any five towns; 

2. Use the supplied matrix to develop a W matrix showing the 0.5n(n-1)=10 
unique distances between these places;

3. Using a suitable threshold distance, convert your matrix into a 0/1 binary 
matrix of adjacencies;
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4. Examine each of the measures you have created in relation to the three 
properties that any metric distance should have. Simply stated these are 
(1) that the distance between points must be a positive number unless 
the points are the same, in which case the distance will be zero; (2) that 
the distance between two points is independent of which way round it is 
measured; and (3) the triangle inequality, which states that it must always 
be at least as far to travel between two points via a third point rather than 
to travel directly;

5. If for each place, we define adjacency by its two nearest neighbors, how 
does the derived binary adjacency matrix A differ and why?

6. Based on a simple inverse distance rule ‘normalize’ the distances for each 
location this such that each row total sums to 1. For each place these are 
expressions of a relative distance;

7. Summing for each column and ignoring the infinities, which is the most 
‘influential’ place in this system?

Comment/answers

This is a sample set of result for a pretty arbitrary choice of places, although 
readers with knowledge of the vitae of a past Ordnance Survey Director Generals 
will understand why Berwick on Tweed is included.  Table 2.4 provides the 
measured road distances.

0134311182338
0314177394

0445211
0503

0
/

Berwick
Ayr

hAberystwyt
Aberdeen
London

BerwickAyrAberysAberdeenLondonToFrom

Table 2.4: Road distances in Great Britain

Using a 220 mile threshold to define the spatial relationship ‘near’, we get 
the adjacency matrix shown in Table 2.5.
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01010
0010

001
00

0
/

Berwick
Ayr

hAberystwyt
Aberdeen
London

BerwickAyrAberysAberdeenLondonToFrom

Table 2.5: An adjacency matrix from Table 2.4

This remains symmetrical because the metric distance AB is same as 
distance BA

If, for each place we define adjacency by its two nearest neighbors, we get 
the matrix shown in Table 2.6.

00011
10010
01001
11000
10100

/

Berwick
Ayr

hAberystwyt
Aberdeen
London

BerwickAyrAberysAberdeenLondonToFrom

Table 2.6: An alternative adjacency matrix

This matrix is asymmetrical; places do not share the same neighbors

Using these same distances to compute an interaction matrix W, based on 
a simple inverse distance rule and then normalizing this such that each row 
total sums to 1 gives the results in Table 2.7.

.

2368.12013.18696.9184.7737._
000.13901.1681.2872.1546.
000.13968.1677.3004.1350.
000.12407.2362.1682.3548.
000.13573.3674.1461.1293.
000.12420.2076.3877.1626.

/

.

SumCol
Berwick
Ayr

hAberystwyt
Aberdeen
London

RowSumBerwickAyrhAberystwytAberdeenLondontoFrom

∞
∞

∞
∞

∞

Table 2.7 : An interaction matrix based on Table 2.4

41



Summing for each column and ignoring the infinities, the most ‘influential’ 
place in this system is BERWICK. Those who know UK will know that this 
isn’t a very useful result, largely because of the selection of places used. At 
least one very famous GI scientist might disagree!

Suggestions for modification

As in the previous exercise software such as MINITAB™, Excel, or a few lines of 
simple code, the original W matrix can be ’powered’ to explore the network 
distance at differing numbers of ‘steps’ (lags) lags as described in detail by 
Unwin (1981), Tinkler (1977) and Garner and Street (1978). In turn this leads to 
an appreciation of the very general notion of relations of almost any kind 
defining spaces of interest.

42



2.7 Exercise (6): Projection and location

Aims and introduction

Students should by now appreciate that metric Euclidean distances define 
perhaps the simplest of the spaces that as geographers we analyze. 

A very good way to introduce the distortion properties of map projections is to 
use the computer to examine the graticules (grids of parallels and meridians), 
continental outlines, and Tissot’s Indicatrix for a variety of projections

Even creating a simple 'upside down' Mercator projection and moving the central 
meridian from the Atlantic to somewhere else radically alters one’s perception of 
the planet. 

Intended learning outcomes

This exercise can be as long or as short as necessary to fit a variety of intended 
learning outcomes. If you teach map projections in any detail, the ability easily 
to display at least 25 standard projections and their associated graticules 
together with the world coastline and a map of Tissot’s Indicatrix is absolutely 
invaluable.

•  List the major types of map projections and developable surfaces 
and explain, with examples, how the Indicatrix enables their 
distortion properties to be visualized;

•  Explain why the number of possible map projections is to all 
intents and purposes infinite.

Resources needed

Software to support such an exercise can be found in many GIS. Alternatively Jo 
Wood’s Projector is available as a Java applet at:

http://www.soi.city.ac.uk/~jwo/projector/

Note that this needs Java to be installed on any machines using it.

Suggested student briefing
 

It often comes as a surprise how the 'shape' of the continents and oceans 
changes when we change our map projection. Although promoted largely as 
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propaganda, the controversy surrounding the Peters projection UN is a 
good example of how our perception of the planet can be changed. This 
experiment uses some software to draw the outline of the coasts at global 
scale on a series of 25 different map projections.

1. If the entire topic of map projection is unfamiliar, go to the 
Wikipedia entry http://en.wikipedia.org/wiki/Map_projection
and read it through carefully.

2. Types of deformation

• At your computer, go to the Java applet at 
http://www.soi.city.ac.uk/~jwo/projector/. If it does not load 
then you may well have also to install Java.

• In view ensure that you have switched on all three possible 
displays (graticule, Indicatrix and coastline)

• Select cylindrical then Mercator as an example of a 
conformal projection. Examine the Indicatrix and the 
graticule and confirm that the former is everywhere a circle 
not an ellipse. In doing this it is useful to go back to view 
and switch off the coastline display. What property of this 
projection does this signify? What differs across the map of 
circles and why?

• Repeat for the Lambert Equal Area which is another 
cylindrical projection. How does the distortion shown by the 
plot of the Indicatrix differ and what property does this 
signify?

• Repeat for the Equidistant Conic as an example of an 
equidistant projection.

It should be clear that all map projections distort some combination 
of area, shape, direction, bearing, distance and scale. It should also 
be clear that the Indicatrix is a simple graphical way of showing 
some of these properties by way of the Indicatrix area, orientation 
and, if an ellipse, the ratio of its two axes. Ensure that you 
understand how these relate to properties of each map projection.

3. Developable surfaces

• Examine a variety of azimuthal projections;
• Examine a variety of conic projections;
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• Examine a variety of cylindrical projections;
• Finally, look at the Mollewiede and Eckert as examples of 

mathematical projections.

In all cases, try to relate the map of the global coastlines with the 
graticule and the Indicatrix 

Comment/answers

There are no ‘correct’ answers.

Suggestions for modification

WWW has numerous other resources for teaching map projections in a relatively 
informal way, for example:

http://www.csiss.org/map-projections/index.html

This site has examples of numerous other projections and links to alternative 
software for creating them such as:

http://www.uff.br/mapprojections/mp_en.html

Other sites are:

http://www.nationalgeographic.com/xpeditions/lessons/01/g912/projections.html
http://www.youtube.com/watch?v=AI36MWAH54s

The exercise can be extended almost without limit. Formally it is useful to quiz 
students on what projections are appropriate for a variety of mapping tasks. One 
of the more fascinating extensions is to introduce a discussion on how our 
familiar map projections influence our perceptions of our place on the planet. 
Once students have accepted that the planet looks different according to how we 
chose to display it, a further discussion on our mental maps can be introduced.
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2.8 Exercise (7): Transforming locations

Aims and introduction

A critical and sometimes neglected step in many data integration exercises is the 
co-registration of data from different sources onto the same co-ordinate system 
using a grid on grid transformation. This exercise can be done using GIS 
software, but it is very instructive to follow all the steps using more basic tools. 
This graphical exercise is intended to help fix ideas about co-ordinate 
transformation.

Intended learning outcome

After completing this exercise students will:

• Understand that we can take one pattern of locations into a different co-
ordinate system by means of an affine transformation that involves a 
change in scale, translation of the origin and rotation of the axes.

Resources needed

You will need some lined graph paper, some tracing paper (ideally transparent 
lined graph paper), a pencil and, perhaps, a calculator or spreadsheet.

Suggested student briefing

1. Create a grid on your graph paper with X and Y axes each going from 0 to 
100.

2. On this grid mark eight randomly located points and read off their (x, y) 
co-ordinates.

3. Use the tracing paper to prepare an identical set of axes, but do not mark 
any points on it.

4. Place the transparent grid on your original one with its origin exactly on 
the origin of the original one and rotate it by a small known angle (say 
15o). 

5. Next shift (translate) the origin by a known small amount, and then mark 
on the transparent paper the positions of your eight points.

6. Read off the co-ordinates of the eight points in this new system.

Comment/answers
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The exercise is intended to demonstrate how an affine transformation ‘works’. A 
detailed blow by blow account is in O’Sullivan and Unwin (First Edition only, 
2003, pages 290-301). 

Suggestions for modification

If mathematically inclined, compute and use the affine transformation matrix for 
this operation. The development of the single affine matrix is described in the 
reference provided.
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Chapter 3: Patterns of Point Objects 
 
3.1 Introduction 
 
This chapter continues the examination and clarification of concepts relating to 
point objects, for which as argued in Chapter 1, appropriate, complex/ second 
order, concepts relate to words like ‘distribution’, ‘dispersion’, ‘density’, ‘pattern’ 
and ‘scale’ and, at higher level still, third order concepts relating to point process 
models, stationarity and isotropy/anisotropy. In this chapter we provide 
suggestions for exercises based mostly in the CRIMESTAT package that explore 
such second order concepts as dispersion, density and pattern in distributions of 
point located objects. The main exercise looks critically at familiar tests against 
the hypothesis of complete spatial randomness, otherwise perhaps known as ‘no 
pattern’. 



3.2 Exercise (8): Dotting the map

Aims and introduction

Dot maps show differences in the location and density of point located ‘events’. 
Although numerous methods of point pattern analysis have been developed, it is 
only seldom that in practical studies we have suitable data for these analyses. 
The aim of this exercise is to show why this is so, and to force students critically 
to examine any dot/pin maps that they see.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately 
presents complex/second order concepts referred to as distribution, 
dispersion, pattern, clustering, and density. This exercise uses visualization 
to address them.

Intended learning outcomes

After doing this exercise, students will

• Be able to recognize a simple dot or pin map;
• Understand the characteristics of a true point pattern suitable for 

statistical analysis as distinct from a simple dot density map;
• Appreciate the importance of the ‘art and science’ of cartography in 

determining the look of a map.

Resources needed

WWW browser with access to Google™.

Suggested student briefing

1. In order to understand some of the issues in ‘dotting’ a dot map watch 
the tutorial from Sara Fabrikant at 
http://www.csiss.org/streaming_video/csiss/fabrikant_dot_maps.htm.  Pay 
particular attention to the distinction she makes between a ‘one to one’ 
and a ‘many to one’ mapping and to the importance of exact locations vs. 
data that are aggregated over areas.
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It should be clear that for a ‘one to one’ mapping the basic data have to 
be suitable, with perhaps five basic conditions being necessary. These 
are:

• The pattern should be mapped/projected  on the plane such that 
distance between the points are preserved;

• The study area should be determined objectively, with boundaries 
that are not arbitrary. In practice this is very hard to achieve;

• The pattern should be an enumeration of all the defined point 
objects in the study area;

• There should be a one-to-one correspondence between dots on the 
map and objects on the ground, one dot, one object;

• Locations should be proper, not for example arbitrary points within 
areas chosen to be in some sense representative.

2. Now go to Google™ (or similar search engine) to find a proper dot map 
that meets all five conditions. If you search for ‘dot map’, ask yourself 
several questions:

• Is there a one to one between the dots and distinct ‘events’ such as 
the location of a crime, some facility or whatever? Often dotting is 
used as a cartographic symbol with a ‘many to one’ relationship to 
the phenomenon being mapped, for example ‘1 dot represents 
2000 acres’. These are dot density maps of the ‘choropleth’ variety;

• Are the locations ‘proper’? Is each dot located at the correct place 
where the ‘event’ occurred or is to be found? Often dots are placed 
at the centroids of areas or in a stipple across an area, so the 
locations have no special meaning and can’t be used in point 
pattern analysis;

• If the two conditions above are met, is it a sample or a complete 
enumeration or census?

3. If searching using ‘dot map’ doesn’t reveal anything, try instead a search 
using the post-GIS term for the same type of map which seems to be ‘pin 
map’.

Comment/answers

Almost all of the images returned using a ‘dot map’ search will actually be dot 
density maps that do not meet the five conditions. Searches using ‘pin maps’ 
seem to do better. It is probable that students will find genuine examples in 
some crime maps and/or maps in epidemiology. It is worth emphasizing exactly 
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what dot density maps show, which is area aggregated data and thus make the 
point that just because dots are used in the representation it does not mean that 
the data themselves relate to point objects. The simple conclusion is that we 
seldom have ‘pure’ point data at precise locations on the plane of the sort 
required by almost all the standard methods of point pattern analysis. This is a 
very important lesson! 

Personally, I’ve never been sure that they are all that useful unless they show 
rates of occurrence. In crime pattern analysis, the dots might useful because 
they tell the police where to deploy their resources, but in epidemiology and 
criminology surely it is the rate that matters, relative to some underlying factors?

In addition, a majority of the maps returned will be cartographically awful, hardly 
worth drawing in the first place. 

Suggestions for modification

Discussion of the conditions for point pattern analysis to be sensible can be 
extended further. For example, a case can be made that some methods of 
analysis do allow use of sampled data (most obviously using randomly 
distributed quadrats and/sampling nearest neighbour distances in ecology)
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3.3 Exercise (9): Drawing your own pin map

Aims and introduction

There are two exercises here, the first of which simply uses Google™ to produce 
maps, whilst the second uses Microsoft Excel ™ to produce maps of three 
supplied point data sets. The overall aim is to introduce the idea of patterns in 
point data that are revealed by the maps.

Geometry, space and level

As in Exercise (8), a set of located point objects when mapped in a metric 
space immediately presents complex/second order concepts referred to as 
distribution, dispersion, pattern, clustering, and density. This exercise uses 
visualization to address them.

Intended learning outcomes

After doing this exercise, students will be able to:

• Produce dot/pin maps of any facilities recorded in the Google™ Maps data 
base and/or

• Map any point located data provide as (x, y) co-ordinate pairs in a 
Cartesian system;

• Criticize the cartography they employ;
• Suggest possible descriptions for the point patterns revealed. 

Resources needed

Approach (a) requires a web browser and (b) needs Microsoft Excel™ or, should 
you prefer it, whatever standard GIS you use. Approach (b) also requires access 
to the three supplied data sets called BOOK, BANK and SNOW. 

Suggested student briefing

a) The lazy way

1. In your web browser got to http://www.google.com and select the 
Map option;

2. If you live in, or know of, any reasonably large city, enter text in the 
search box as ‘coffee shops in xyz’, where xyz is the name of your city. 
If coffee shops don’t appeal then try some other suitable facility;
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3. The result will be returned as a pin map of the type discussed in 
Exercise (8);

4. In 3.1 above, five criteria were suggested to use in testing whether or 
not such a map is of a genuine point pattern that might be analyzed 
using methods to be introduced in the next Section. Evaluate your 
result in the light of these five criteria;

5. Finally, in your own words how would you describe the patterns 
revealed? Are the point locations ‘clustered’, ‘random’ or ‘regular’?

b) Doing it yourself using Microsoft Excel ™

Three text files of (x, y) co-ordinates of some point ‘events’ are provided:

Book: These are the 12 sample data taken from Table 5.2 page 131 of 
O’Sullivan and Unwin (2010) 

Bank: This is a famous data set that has been analyzed many times, notably by 
the statistician Brian Ripley. These data were taken from the website associated 
with the text by Davis (2002).  It gives 47 (x, y) pairs giving the location (in a 
projected Euclidean co-ordinate system), of dark magnetite crystals in a polished 
cross-section of a rock called anorthosite. The interest is in whether or not this 
distribution is random within the section. Co-ordinates are on a 100x100 grid, 
with its origin at the bottom left, but no units are given (assume cm?) and the 
rock in question forms part of the doorway to one of the banks in the city of 
Cambridge, England. The origin of these data is simply to remind you that not all 
‘spatial analysis’, even in a GIS, must be ‘geo-spatial’.

Snow: This is probably the most famous point data set ever to be analyzed. It 
consists of the locations of 578 deaths from cholera recorded by Dr. John Snow 
in the Soho area of London during an outbreak of cholera in 1854. Snow mapped 
these data as a dot map and was able to show that they clustered around a 
single water pump (no piped water in those days!) in Broad (now Broadwick) 
Street. Acting on his advice, the authorities removed the handle from the pump 
and the epidemic ended soon after, although it may well have already been past 
its peak. The events are celebrated by a facsimile of the pump and in the naming 
of a nearby pub the ‘John Snow’. All epidemiologists and all spatial analysts 
should at some time make a pilgrimage to the street and have a drink in the pub 
that now bears John Snow’s name.

Snow’s work is widely regarded as the birth of scientific epidemiology, and his 
demonstration that the vector for cholera was water-borne led to massive 
investment in UK during the second half of the nineteenth century to provide 
safe public water supplies. Of course, the story isn’t as simple as it is sometimes 
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suggested. For a recent scientific account, see Brody, H. et al., (2000). For a 
‘popular’ account that by Steven Johnson (2006) is highly recommended. 

These data were digitized at the request of Professor Waldo Tobler (UCSB) by 
Rusty Dodson of the US National Center for Geographic Information Analysis 
from a reprint of Snow’s book On Cholera (Oxford University Press, London).

Although the origin is at (0, 0) these data have arbitrary co-ordinates that range 
on X from 8.280715 to 17.938930 and on Y from 6.090047 to 16.972760. In the 
real world, one full unit (e.g. 1.0000) represents about 54m on the ground, so 
the minimum enclosing rectangle has an area of about 0.3km2. Note that the 
coordinate system provides for a lot of unused ‘white space’ around these points, 
which you might judge should not be included in any analysis.

1. For BOOK, BANK and SNOW produce simple dot maps. This can be 
done in Microsoft Excel ™, provided care is taken to scale the X, Y 
axes appropriately as follows. Go FILE>OPEN>FIND and navigate to 
where you have saved BANK.TXT. Then chose ‘delimited’ and set this 
to ‘space’ with the data type set as ‘general’. This should incorporate 
the two columns into Microsoft Excel™ ;

2. In the chart wizard, it’s a simple matter to chose the (X,Y) scatter 
plot. What I seem unable to do is to stretch the axes on these plot 
such that they have the same scale (you can set the range), and 
have usually done this before printing by clicking on the two 
horizontal axes of the display and pulling them out until I get the 
desired equal scale;

3. If you have access to ArcGIS™ or similar, you should be able easily 
to draw ‘proper’ maps of these three distributions;

4. In Exercise (8), five criteria were suggested to use in testing whether 
or not such a map is of a genuine point pattern that might be 
analyzed using methods to be introduced in the next section. 
Evaluate your result in the light of these five criteria; 

5. In your own words how would you describe the patterns revealed? 
Are the point locations ‘clustered’, ‘random’ or ‘regular’? How do they 
differ?

6. How do you think the choices made for the ‘frame’ will affect the 
descriptions you have given?

Comment/answers
Book
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Figure 3.1 Dot map for Book

Figure 3.1 shows the distribution of events in BOOK. I have used Microsoft 
Excel™, copied into WORD. The box could be re-sized such that the scales 
on X and Y are the same, noting that the range of value on X is greater. 
Visually I would say that the pattern looks fairly random, but with only 12 
events how can one tell?

Figure 3.2 Dot map of BANK

Figure 3.2 shows the distribution of events in BANK. This is also from 
Microsoft Excel™, but scaled and transferred into PAINT where it has been 
edited a bit more. It ought to have a scale, as we are now well on the way 
towards a proper ‘map’. Visually I’d describe it as ‘more regular than 
random’.
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Figure 3.3 Dot map of SNOW

Figure 3.3 shows the distribution of events in SNOW. The usual 
interpretation is that the cases ‘cluster’, that is they are more aggregated 
than random, with the clustering around a specific point, the Broad Street 
water pump. Note that in this hypothesis, we only have one cluster, so what 
is the value of the standard CSR model in this case?

One obvious point that the SNOW data show is the dependence of what we 
see on the ‘edges of space’ that we chose to use. We can make this look 
even more clustered by simply extending the frame. Zooming in to a subset 
of these same data might well make them look random or even dispersed. 
In the case of BANK, zooming out would gradually make hem look more 
aggregated than random. In other words, the choice of frame is critical in 
the visualizations and what should be done is basically to proceed carefully 
unless there is a ‘natural’ frame. 

Suggestions for modification

An obvious extension is to ask students to run a kernel density estimate over 
these data, with three possible reasons for interest:

a) As a means of locating ‘hotspots’ in the patterns;

b) To initiate a discussion of band width, kernel function and even the 
appropriateness of the underlying ‘geography’ (For example, in the Snow case 
should we use street walking distances and not straight lines?);

c) To show the value of a transformation from a pattern of discrete objects (the 
events) into a spatially continuous field of density estimates.
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3.4 Exercise (10): Proportionate symbol maps

Aims and introduction

Proportional symbol maps  show differences in the location and magnitude of 
point located ‘events’ and are appropriate for visualizing what statisticians call a 
‘marked’ point pattern. What we now have is a pattern of discrete point 
objects/events, but in each case we have an additional ‘weight’ attached to each 
event.  Almost all the basic methods of point pattern analysis can be modified by 
use of such weights. 

Geometry, space and level

As Exercise (8) and (9), a set of located point objects when mapped in a 
metric space immediately presents complex/second order concepts referred 
to as distribution, dispersion, pattern, clustering, and density, but in this 
case we have two sources of variation in geographic space and but with a 
primitive/first order notion of magnitude added.

Intended learning outcomes

After doing this exercise, students will

• Be able to recognize a true proportionate symbol map;
• Understand the difficulty of simultaneously associating both variation in 

magnitude and variation in geographic space;
• Be able to distinguish such maps and the data on which they are based 

from maps that use similar symbolism but to display area aggregated 
data;

• Appreciate the importance of the ‘art and science’ of cartography in 
determining the look of a map.

Resources needed

WWW browser with access to Google™.

Suggested student briefing

1. Go to Google™ (or similar search engine) to find a proper 
proportionate symbol map that meets all the five conditions noted in 
Exercise (8). Ask yourself:

2. Is there a one to one between the dots and distinct ‘events’ such as 
the location of a crime, some facility or whatever? 
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3. What is the numerical variable that is attached to each event in the 
pattern?

4. Are the locations ‘proper’? Is each dot located at the correct place 
where the ‘event’ occurred or is to be found? 

5. If the conditions above are met, is it a sample or a complete 
enumeration or census?

6. Is the way the symbol used is related to the magnitude of the variable 
being displayed appropriate?

7. Can you make ‘sense’ of the distribution?

Comment/answers

The results are likely to be much more satisfactory, cartographically speaking, 
than for dot/pin maps, but there is a real difference between maps in which the 
symbol refers to an exact spatial location (such as, for example, size-graduated 
circles to show the output from a series of point located factories) and those that 
refer to data that are an aggregate for a specified area and are usually located at 
some central point within the area (such as a population map of the Counties in 
a State). In fact, examples of the former will be hard to find. Almost always the 
maps found will actually have symbols (circles are favourite, but beware some of 
the bizarre symbols that were found) used as a form of area symbolism and their 
locations were at some arbitrary point (usually the centroids) within the areas to 
which the aggregate data refer. Exercise (22) on choropleth mapping makes 
some further points about this sort of data, especially the folly of mapping 
absolute totals when using area aggregated data. It is worth using the results to 
point out the problem of isolating effects related to the geography of the 
locations themselves at the same time as their magnitudes.

Suggestions for modification

The main interest in this exercise is likely to be the weird and wonderful shapes 
used by some web cartographers to visualize the located quantities. It is well-
known that use of even the simple circle with its area proportional to the value of 
the located datum can mislead. Human beings simply do not ‘see’ circle area in 
this way. The classic study and the suggested ‘law’ that corrects for it is by 
Flannery (1971).

Students may well also find maps that have as their symbols graduated pie 
charts showing the proportions of some constituent of the total. These can 
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display an enormous amount of data, but whether these visualizations are 
effective is moot, and might form the basis of an in-class discussion about the 
balance between map clarity and data volume/character.
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3.5 Exercise (11): Centrography

Aims and introduction

The best way to learn something about point pattern analysis is to do it. This 
exercise uses public domain software and three supplied data sets to go through 
typical analyses, but at the same time highlighting the practical implications of 
some of the difficulties. It will probably take students around 4-5 hours to 
complete all the tasks.

• To demonstrate computation of simple basic point pattern measures with 
different types of patterned data;

• To illustrate some of the problems and issues that might emerge in such use, 
notably the influence of the area used and the need to understand edge 
effects.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately 
presents complex/second order concepts referred to as distribution, 
dispersion, pattern, clustering, and density. This exercise uses simple 
arithmetic to address them.

Intended learning outcomes

After doing this exercise, students will

•  Realize that the boundaries of the space we choose greatly affect 
these  types of measure;

•  Understand that centrography does not explicitly capture the notion of 
pattern in a distribution of point events;

•  Critically assess the situations in which these measures might be used 
to compare different distributions in the same area and/or the change 
in a distribution over a sequence of time slices.

Resources needed

CrimeStat III, produced by Ned Levine Associates for use by police forces 
interested in the spatial distribution of crime, is available as a free download and 
can be used to analyze almost any point pattern, not just the distribution of 
crimes. Although it will compute many of the measures we have discussed, it 
doesn’t compute a quadrat analysis or some of the more esoteric measures, such 
as G(d) and F(d), nor does it have serious production graphical capabilities. 
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Likewise, if you have an Apple™ machine you’ll need to run it in Windows 
emulation mode. The graphic deficiencies can be overcome, either by use of 
ArcGIS™ ‘shape’ (.shp) files as export and import, or by using ASCII text files 
(.txt) files imported into Microsoft Excel™.

Suggested student briefing

1. Visit the website at http://www.icpsr.umich.edu/CRIMESTAT/  and 
download the Crimestat III software. It is best to download all the 
associated files at the same time. Follow the instructions to install 
the program;

Almost all the problems you might have when using Crimestat III will 
be associated with errors made at the data description and entry 
stages, so it pays to take care.

In Data:

•   Set file characteristics at ASCII
• Select file, say BOOK, and navigate to it
• Check the SPACE SEPARATOR and ensure that there are 0 

header lines and 2 columns.

On the Data Set Up screen, take care to ensure that you:

•  Set X as column 1
•  Set Y as column 2
•  The remaining fields should be either <none> or <blank>
•  Set the type of co-ordinate system to ‘Projected’, units to ‘m’ 

(they are actually arbitrary).

Several of the Crimestat routines require either a ‘reference’ file, a 
‘measurement’ file, or both. Experience suggests that although you 
can get some results without creating and saving these, it’s often 
better to create do this right at the start. Note, too, that saving the 
parameters, available under the ‘options’ menu, saves both reference 
and measurement files. If you do this, you need to think hard about 
what area to input and about the density of estimates you want in, 
for example, the K(d) function and/or kernel density estimation 
routines, so you may need to revisit this step!

You are now ready to analyze some data!
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2. Using BOOK, and to gain confidence, show that the mean center of 
the 12 events is at (52.575, 46.175). In addition, record the average 
density, and standard distance;

3. Use BANK and then SNOW to do the same things;

4. Do these numbers tell you very much? Do they help differentiate the 
patterns? 

5. On your plot of the SNOW data, locate the mean center and confirm 
that it does indicate something useful.

Comment/answers

Assuming projected data with co-ordinates in m Table 3.1 shows the 
results, but the exact numerical values aren’t important:

File n Mean X Mean Y Density (m assumed) Standard 
distance

BOOK 12 52.6 46.2 0.001571 43.98
BANK 47 36.6 40.1 0.006442 39.24
SNOW 578 13.0 4.7 5.500000 2.56

Table 3.1 Centrographic measures for BOOK, BANK and SNOW

Obviously one needs to convert the apparent density units into those 
appropriate for the particular data set. These centrographic measures tell us 
very little, at least in these applications. Answers will all lie close to the 
centre not simply of the data co-ordinates but of the frame chosen, around 
(50, 50). They are useful to compare patterns of ‘events’ when these events 
are of different kinds in the same geographic area, for example the 
locations of stores of differing types across a city area. They are also 
sometimes useful in tracking the evolution of a pattern over time. One 
minor use I can see is for the so-called ‘standard deviational ellipse’ (not 
circle) which can indicate a pattern of events that has some directional bias. 
Maybe, just maybe, the SNOW analysis shows a third useful thing they can 
do?

Suggestions for modification

1. Read the PDF files from the manual Chapter 1 and then Chapter 2, 
sections I (Data Setup), II (Spatial Description) and III (Spatial  
Modeling); 

2. There is no need to go further than Chapter 2, but you might also read 
appropriate bits of Chapter 4.1 – 4.17 (Centrographic Statistics, 
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Chapter 5.1, 5.7, and 5.40 and Chapter 8.1 – 8.14 on kernel density 
estimation);

3. You might also like to follow in its entirety the example given at the 
end of Chapter 3 (page 3.32 et seq.) using a supplied .dbf file and the 
‘general sample data’ found in a ZIP file. If you do this take care to 
name the columns correctly.
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3.6 Exercise (12): Nearest neighbor statistics

Aims and introduction

In elementary texts such as Unwin (1981), the most often used measure of 
spatial pattern is the classic nearest neighbour statistic devised originally by 
Clarke and Evans (1954). The logic behind this statistic is described by O’Sullivan 
and Unwin (2010, pages 130-132 and 143-145). Basically the so-called R-index is 
the ratio of the mean of the observed distances from each event in the pattern 
to its nearest neighbour to the expected mean distance under the hypothesis 
that the pattern is random. A statistical significance test can be developed, since 
both the expected mean distance and its variance are readily obtained from 
simple mathematics. The approach has a number of possible traps for the 
unwary, not least of which are the choice of the ‘frame’ in which the events are 
considered to be present and the possible impact of unwelcome effects at the 
edges of the distribution when the number of events is low. This exercise uses 
Crimestat III and the same data as in Exercise (11) to illustrate these issues.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately 
presents complex/second order concepts referred to as distribution, 
dispersion, pattern, clustering, and density. This exercise introduces the 
analytical/third order concept of a spatial process.

Intended learning outcomes

After doing this exercise, students will:

• Be able to conduct a nearest neighbour analysis using Crimestat III;
• Understand that, if the R-index is the ratio of the observed to expected 

mean distances to nearest neighbour, the ‘expected is relative to some 
hypothesis most obviously that of complete spatial randomness;

• Be able to assess the statistical significance of the departure of the 
computed R-index from 1.0 using Student’s t;

• Discover how importance the choice of frame is to the results obtained, 
preferably by showing how this is taken up into the calculations by way of 
the study region area used to find the expected mean distance under the 
null hypothesis that of compete spatial randomness;

• Note that a general test such as this might not be what is wanted in a 
specific case study such as John Snow’s problem;

• Finally, understand that scale effects can be addressed using the same 
approach to examine distance to second, third, etc, nearest neighbours.
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Resources needed

Crimestat III together with the point pattern data sets used in Exercise (11).

Suggested student briefing

For these exercises, unless specifically requested, DO NOT set the area in the 
measurement parameters section of the file set up.

1. Using BOOK use >spatial description>distance analysis I>nearest  
neighbour analysis to confirm that the mean distance to nearest 
neighbour for these 12 points is 21.62 as given on page ;

2. Using BANK confirm that the Clark and Evans R with no edge correction 
and using the Crimestat III default way of finding the area from the so-
called minimum enclosing rectangle as (77-1)*(96-0) = 7296 cm2 is:

2539.1
23.6
81.7

exp

===
d
d

R obs

With a t-value of 3.33, this is significantly different from random at 
p=0.001.  Given that we have observed mean distance to nearest 
neighbor greater than expected, we infer that the distribution of points is 
‘more dispersed than random’.

3. However, there are two well-documented issues with this statistic, which 
make it not very ‘GISable’ and the consequences of both can be 
illustrated using these same data. First, there is a critical dependence on 
the area used in the calculation of the expected mean distance. In 
computing the index, Crimestat III defaults to use the area given by the 
range of the co-ordinates on the X and Y-axes which gives an area of 
7296 cm2. To illustrate this, repeat the analysis, but in this case in 
‘measurement parameters’ set the area to be that of the entire frame, 
which is 100 units x 100 units = 10,000 units-squared. Confirm that we 
now get:

0710.1
29.7
81.7

exp

===
d
d

R obs

With a t-value of 0.9317, this isn’t statistically different from random. 
Note that there is no ‘natural’ boundary for these data: in fact I suspect 
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that the size was determined by Professor Ripley’s unwillingness to 
measure any more crystals!

What does this tell you about the idea of ‘randomness’ in point patterns?

4. Second, there is also an effect at the edges of the distribution. For small 
numbers of events the effects can be quite dramatic, shifting the null 
value from 1 upwards into the ‘more dispersed than random’ range. This 
arises because points near the edges of the distribution are forced to 
find neighbors within the space, when in reality it is probable that their 
true nearest neighbors would be at some shorter distance outside the 
frame. This clearly biases the mean upwards. I know of four ways of 
handling this issue. The first is that used by Crimestat III in which such 
points are handled by taking the distance from a border event to the 
frame edge (assuming either a rectangular or circular frame) if this 
distance is less than any measured distance to the nearest event within 
the frame.  Section 5.11 of the Crimestat III manual explains this in 
more detail. To see what happens, re-set the ‘measurement parameters’ 
area to zero and then run the program again, but this time ticking the 
‘rectangle’ edge correction box. This will correct things as:

0274.1
23.6
40.6

exp

===
d
d

R obs

The second places a ‘guard area’ around the frame and proceeds as 
usual but allows points near the edge of the frame to find neighbors 
within the guard region. Of course, the nearest neighbour distances of 
these guard points are not themselves included in the analysis. The third 
approach uses a series of edge corrections, established by a 
combination of mathematics and experiment. Possibly the most elegant 
approach is the fourth, which wraps round both edges of the frame, to 
meet their opposite side and then proceeds in the usual way. Notice that 
we now have three possible values for the nearest neighbor statistic for 
these same data, dependent on what we assume about the area of the 
region and how any edge effects are handled by the software. If nothing 
else this should alert you to the need to take extreme care when using 
this approach, the more so if you don’t actually know precisely how any 
GIS you use does its calculations.

5. Load SNOW and repeat the above analyses. It is instructive to 
experiment with different values for the region area. Does the nearest 
neighbor statistic help in any meaningful way in testing Snow’s 
hypothesis?

68



6. A third problem with the distance to nearest neighbour is that, by taking 
only the nearest neighbour distances it only indicates the nature of any 
global patterning at this ‘scale’. This deficiency can be circumvented by 
repeating the analysis (the mathematics is essentially the same) for 
successive ‘orders’ of neighbors and so examining the patterning at 
successively longer distance scales. Crimestat III lets you do this on the 
basic distance analysis 1 screen by asking for as many neighbors as 
desired to be considered. Do this for both BANK and SNOW but when 
you have the results, use the GRAPH option to get simple plots of the 
change in R with order of neighbour.

Comment/answers
   
See test above. The sensitivity of the test to the definition of the study area and 
with small n to edge effects comes as a surprise. It is useful to point out that 
Snow didn’t really need to do any statistical analysis to get his point across. 
Steven Johnson’s (2006) book should be referenced for the complete story.

Suggestions for modification

In Snow’s second map, the usual display of a point pattern that we have seen so 
far was supplemented by a line enclosing all the houses that from his local 
knowledge Snow knew to be closer to the infected Broad Street pump than they 
were to any other.  In essence this was what future spatial analysts would call a 
Voronoi diagram or Thiessen network and it showed with astonishing clarity that 
not only did the cases cluster, they clustered around the suspect pump with only 
a few exceptions of deaths to people for whom the pump was not the nearest 
source of water. The pattern of streets in 1854 wasn’t the same as it now is, but 
a rough approximation to the Snow’s border can be obtained by computing and 
displaying the Voronoi/Thiessen network on top of a dot/pin map of the deaths.

If students have access to a GIS capable of computing the Voronoi tessellation a 
display of these point data with the Voronoi diagram for all 13 pumps in the area 
is a very convincing demonstration of the power of simple, almost geometric 
‘spatial analysis’. 3DField, used in Exercise (30) will compute this as well.
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3.7 Exercise (13): Ripley’s K statistic

Aims and introduction

In view of the problems with the single number approach, it is hardly surprising 
that spatial statisticians have tried to characterize pattern using distance 
functions such as those discussed in the text. Of these, Ripley’s K(d) is the most 
satisfactory. This exercise is a simple introduction to the approach. The theory 
behind the approach is introduced in O’Sullivan and Unwin (2010, pages 135-137 
and 146-148.

Geometry, space and level

A set of located point objects when mapped in a metric space immediately 
present complex/second order concepts referred to as distribution, 
dispersion, pattern, clustering, and density. This exercise uses both the 
analytical/third order concept of a spatial process and visualization to 
address them.

Resources needed

Crimestat III together with the point pattern data sets used in Exercise (11)

Intended learning outcomes

After doing this exercise, students will:

• Be able to conduct a point pattern analysis using Ripley’s K(d) function 
approach in Crimestat III;

• Understand the process by which a mean value of K(d) at some distance 
d is estimated;

• Be able to interpret a graph of computed values of K(d) against distance, 
d;

• Understand how theoretical values for a random distribution can be 
derived and used to convert K(d) into the L(d) function in which the 
theoretical expectation for a random pattern is zero at all distances;

• Understand that this approach enables investigators to examine the scale 
at which a pattern of point events can be said to ‘cluster’;

• Be able to assess the statistical significance of the departure of the 
computed K(d) using the randomization approach.

Suggested student briefing
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Much modern work in point pattern analysis uses the K(d) function approach 
developed by Ripley (1976) which is based on all the distances between events in 
the pattern. Computation of Ripley’s K(d) is easy to explain but very tedious to do 
except by computer. All we do is to place circles, of each radius d , centered on 
each of the events in the pattern and find the number of events that fall into that 
circle. Doing this with the same radius d centered on each and every event allows 
calculation of a mean number for this distance. All we then do is to repeat this for a 
series of distances. Each mean count is divided by the overall study area event 
density to give K(d).  Formally this is:
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Remember that ( )dC i ,s  is a circle of radius d centered at si and the operation 
specified by the numerator is the ‘number of’ (#) ‘events’, S,  ‘included in’ (∈ ) 
that circle. Because all distances between events are used, over a range of 
distances, this function is much more informative about the patterning than 
any single number such as the R-index ever could be, but what values would 
we expect if the pattern is random? In fact this is easy to calculate, at least if 
there are no problems with edge effects and the definition of the area of 
interest. Since πd 2 is the area of each circle, and λ is the mean density of 
events per unit area, the expected value of K(d) is simply

( )( )
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d

ddKE

π
λ

λ π
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=

Because the expected function depends distance squared, both the 
expected and observed K(d), this function can become very large as d 
increases and it is difficult to see small differences between expected and 
observed values when they are plotted on appropriately scaled axes. The 
usual way round this problem is to convert the expected value of K(d) to zero, 
by dividing it by  π, taking the square root, and then subtracting d. as

ddKdL −=
π

)()(

The result is another function of distance, this time called the L function. If 
the pattern is random performing the same operations on the observed values 
of K(d), we should get values near zero.  Where L(d) is above zero, there are 
more events at the corresponding spacing than would be expected under 
IRP/CSR; where it is below zero, there are fewer events than expected.  
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Crimestat III will provide an estimate of K(d), but to do so it has to have a 
defined reference file of a grid of locations. It also produces all the data needed 
to plot L(d), together with a simulate envelope around this for use in evaluating 
the significance of departures from the random expectation for L(d), which is 
zero.

1. Start Crimestat III 
2. Using the distance analysis 1 screen, set up and compute the K(d) 

function for both BANK and SNOW. The output is the L(d) (called t’ on 
screen)  

One problem with these functions is that at large d edge effects enter into 
consideration, where a substantial proportion of each circle is outside the 
study area.  In these cases by definition there are no events outside the study 
region, so the number of events in the circles is lower than would be expected 
based on an assumption of uniform density. This is a problem in almost all 
work in spatial statistical analysis: we almost have to either to break some 
assumption made in the derivation of the theoretical values or to attempt 
some corrections that take them into account. Nowadays, plentiful computer 
power enables us to use a simulation approach to this problem. No matter 
which statistic we are interested in, the procedure is always very simple: use a 
computer to generate a large number of patterns according to some 
hypothesis we have about the process. In this case we’d simply use the 
computer’s random number generator to give randomly located point ‘events’. 
Next, for each pattern we measure the statistic to give an expected 
distribution of values against which the observed values of the same statistic 
can be compared. This approach lacks mathematical elegance, but it enables 
us to allow for things like edge effects, simply by using the same study region 
in the simulations as in our observed data.  Such a simulation approach is 
known as a Monte Carlo procedure, and is widely used in modern statistics, 
but it is computationally very intensive especially when the number of events 
in the observed and hence also the simulated patterns is large. There is also 
controversy about how many simulated patterns should be used. Some purists 
recommend use of a very large number, say 999, whereas those willing to 
take a bigger risk in their assessment might only use 99, but it really rather 
depends on the extent to which the statistical; assessment is important.

3. For both BANK and SNOW use Crimestat III to compute and plot the 
L(d) function. In doing this, use the simulation routine with, say 99 runs 
to get and plot an estimate of a confidence envelope that can be used to 
assess the significance of the observed values. Note that use of the 
GRAPH button will plot the so-called simulation envelope and that it is 
then easy to see at what distances the observed L(d) is outside and thus 
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indicative of a distance scale at which the pattern is more/less regular 
than expected;

4. In doing this note that for SNOW with n = 578 the simulation will take a 
perceptible length of time even on a fairly quick machine!

5. Describe how the two patterns differ and the extent to which these 
results confirm your previous analyses with the same patterns.

Comment/answers

Figure 3.4 shows the results for BANK (left) and SNOW (right) using Crimestat  
III with no edge corrections and with simulation envelopes based on 99 runs.

Figure 3.4 Results for Ripley’s K(d) function for BANK and SNOW

On this display the observed L function is in blue and the green and red lines 
show the extreme values above and below in the simulations. It can be seen that 
the observed function for BANK is often within the simulation envelope but is 
always less than zero, indicating that at all distance scales there a fewer events 
at the specified distance than expected. This should confirm the idea that these 
data are more regular than random. For SNOW at every distance scale the L 
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function is well above zero, indicative of a pattern of events that is more 
aggregated (clustered) than random.

Suggestions for modification

A variation on Ripley’s K(d) function called the O-ring statistic (Wiegand and 
Moloney, 2004) or the neighborhood density function (Perry et al., 2006), has 
been used. This is easily computed by noting that the original K(d) function is 
cumulative with the proportion of events from 0.0 to 1.0 at each circle radius 
plotted as a function of the radius, d.  These more recent functions plot the 
actual proportion in a series of annuli centered on each event. 
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3.8 Further Exercises: Other things you can do with 
Crimestat III

This doesn’t exhaust the options for work on point patterns based on Crimestat  
III. There are perhaps three additional options that you might like to explore 
using these same data at some future time:

1. Computing a kernel density estimation and then exporting the results for 
visualization into a GIS or other mapping program such as 3Dfield (see 
Chapter 6);

2. So-called ‘hot spot’ analysis, which uses a modification of standard cluster 
analysis to find areas of above average local spatial point density, or ‘hot 
spots’. In both criminology and epidemiology such concentrations have 
obvious practical significance;

3. Computing and exporting selected distance matrices for analysis in other 
software. 

There is a useful ‘how to do it’ guide by Luc Anselin  An Introduction to Point 
Pattern Analysis using CrimeStat that shows how to export from that package in 
ArcView™  or ArcGIS™  available at 
http://geodacenter.asu.edu/system/files/points.pdf.
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Chapter 4: Lines on maps 
 
4.1 Introduction 
 
The schema of Chapter 1 developed the idea that line objects have as their 
basic relation the idea of connection in what was called a network space.  
This chapter deals with the first order concepts of length and direction as 
well as the second order concept of connection. 
 
Line objects, that is, entities that have the single geometric dimension of 
length, L1 , are common in geography with perhaps the most significant 
examples being rivers, roads and so on.  Usually, these objects are part of 
an interconnected set or network such as a drainage basin or 
communications network. This means that interest in their properties can be 
at several levels. First, we might be interested solely in the line objects 
themselves, for example, in their length and orientation in a defined space. 
Second, we might be interested in the mechanisms by which such line 
objects become connected into networks. Third, as in geomorphological 
analysis of drainage networks or in shortest path and related analysis, we 
might be interested in properties of some existing network taken as ‘given’. 
Finally, interest might be in the flows of materials, energy and information 
along such lines and through any networks they create. 
 
This makes the representation and analysis of such objects one of the most 
complex and challenging. Since the property of ‘connection’ is of course 
very general, the more so when one realizes that in essence it is the same 
as that of a relation on a set introduced in Section 1.1 and so is one of the 
most important general concepts in science. Surprisingly, the geographical 
literature hardly scratches the surface of this richness. The old text by 
Haggett and Chorley (1969) describes early work in the field. Keith Tinkler’s 
1977 monograph (Tinkler, 1977) contains some forward-looking ideas and 
the popular books by Watts (1999, 2003) give an idea of current work 
outside of geography. In GIS&T, there is a toolkit of methods for spatial 
analysis on a network (SANET) available at  
http://sanet.csis.u-tokyo.ac.jp/index.html. See also Okabe and Satoh (2009) 
 
The exercises introduced in this chapter can only skim the surface of all this 
richness. 

http://sanet.csis.u-tokyo.ac.jp/index.html�
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4.2 Exercise (14): Lines on maps 
 
Aims and introduction 
 
In describing lines we have three new spatial concepts to add to the simple 
idea of location that sufficed to describe a point pattern.  These are length 
or distance, direction and connection.  Before dealing in detail with these, it 
is important to make a clear distinction between the lines used on maps to 
represent areal units or surfaces (boundary and iso-lines), and true linear 
objects in the sense that we introduced them in Section 1.1 
 
Geometry, space and level 
 
This first exercise uses mapped examples of line objects that exist in a 
metric, usually Euclidean space but which if connected define a network 
space. Our concern is solely with the primitive/first order concepts of length 
and direction. 
 
Intended learning outcomes 
 
After completing this simple exercise, students will be able to 
 
• Differentiate between lines used as cartographic symbols and genuine 

line objects; 
• List various ways by which such objects are represented on maps. 

 
Resources needed 
 
Topographic map or map extract delivered over WWW as for example from 
http://www.streetmap.co.uk 
 
Suggested student briefing 
 

1. Find a topographic map or map extract (from 
http://www.streetmap.co.uk or similar website) at a scale of around 
1:50,000 . It will be a help if the map represents an area that you 
have visited or know well; 

 
2. Make a list of all the true line objects shown on it.  You should 

assemble a reasonably long list!  In each case describe how the line 
object is represented cartographically; 

 

http://www.streetmap.co.uk/�
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3. To fix the idea further, list all the examples you can find on the same 
map of lines used to depict the edges of areas or the heights of 
surfaces.   

 
Comment/answers 
 
Roads, railways, river courses, rights of way, electricity transmission lines, 
pipelines but not contours, or boundaries! This is an almost trivial exercise 
but it is one that experience suggests frequently exposes a failure to 
distinguish between representation of some area or surface entity by lines 
drawn on paper and a representation of a genuine linear object. For any 
given topographic map series the lazy way to complete the exercise is of 
course to use the map key. Surprisingly few students realize this. 
 
Suggestions for modification 
 
A possible extension is to look at the nature of the line objects, on some 
scale of ‘wiggliness’ from very straight through to very irregular. 
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4.3 Exercise (15): Measuring length 
 
Aims and introduction 
 
Many people, instructors and students alike, will find this exercise simply 
beneath their dignity, but it is a useful way to look at error in almost any 
measurement. Use of Gmap-pedometer gives a great deal of interest and 
flexibility.  
 
In order to measure the length of a line object we have to break it down 
into a chain of points connected by straight line segments, given various 
names such as  arc, segment, and edge. This means that visually obvious 
turning points along a line are recorded as points, and the length of each 
segment is calculated by simple Pythagoras as in Figure 4.1: 
  
  

.  
 

Figure 4.1 Straight lines and Pythagoras 
(Source: after O’Sullivan and Unwin (2003) Figure 6.4) 
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The sum of a number of these straight line segments gives the total length 
of the line.  
 
Geometry, space and level 
 
This exercise also uses mapped examples of line objects that exist in a 
metric, usually Euclidean space. Our concern is solely with the primitive/first 
order concept of length. 
 
Intended learning outcomes 
 
After completing this exercise, students will understand: 
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• How all methods of measuring the length of a line object ultimately 
depend on a process of digitization into individual, straight line 
segments; 

• The use of simple software in effect to perform what used to be called 
‘heads up’ on-screen digitizing; 

• That there are different ways of doing this and that each has it own 
characteristics, and that 

• Different methods yield different results. Measurements should be 
accompanied by a statement of the conditions employed. 

 
Resources needed 
 
Either a topographic map or access to the website at http://www.gmap-
pedometer.com 
 
Suggested student briefing 
 
This exercise is intended to illustrate how we can digitize line objects and 
measure their length. A simple practical example would be a recreational 
runner/jogger wishing to find how far he or she has run along a particular 
route. 
 

1. Access the website at http://www.gmap-pedometer.com. You will 
see that this is an add on to Google Earth™ designed to allow you to 
measure distances along line objects (such as paths, rivers, roads 
and routes you have taken or intend to take. (Alternatively, but at 
some extra effort find a topographic map and do the exercise 
manually); 

2. Navigate to somewhere known to you and select a line object whose 
length you wish to measure. This could be your walk to University, 
regular run, or some line feature such as a mapped stream. Note 
that you have access to several representations of the feature in 
different map projections and at different scales (‘zoom level’, but 
note that several are just on-screen enlargements of the same map; 

3. Use the tool provided to digitize this line into short, straight line 
segments, measuring the length as you go along in either Imperial 
(miles) or metric (km) units. It is worth noting at this point that 
doing this with a semi-automatic digester or ‘head up’ using on on-
screen map (q.v.) is analogous to the old fashioned method of using 
the edge of a piece of paper marking the turning points as you go 
along, which is the best way to do this exercise from a paper map. 
Exercise (16) has an even quicker way of doing this using dividers 
set to a constant scale distance; 

http://www.gmap-pedometer.com/�
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4. Now repeat the exercise using the satellite image of the same route 
and at different zoom levels, recording your answer at each step; 

 
5. Do the lengths you obtained differ and if so why? 

 
Comment/answers 
 
There are several reasons why different attempts to measure the length will 
give different results of which the selection of points is but one. If using a 
map, whether on screen or not, it may be that the features used are 
represented in some way that is not planimetrically correct or has already 
generalized the feature. It is useful to point out that the ‘wigglier’ the line, 
the more likely is the measure to be in error. 
 
Suggestions for modification 
 
An obvious extension is to measure the same line feature in the field using 
a standard hand held GPS unit or, if very pedantic, a full electronic distance 
measuring instrument. The exercise can also be used in class by asking the 
entire class to measure the same feature and using the pooled response to 
illustrate the classic ‘curve of error’. 
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4.4 Exercise (16): Fractals 
 
Aims and introduction 
 
Exercise (15) will have shown that there is some arbitrariness in how we 
represent a line object and measure its length. Adding up the lengths of line 
segments gives different answers, depending on which points are selected. 
There is a very important general result lurking in this problem. It has long 
been known that the irregular lines often studied in geography sometimes 
have lengths that appear to increase without apparent limit the more 
‘accurately’ that we measure them:  this is the well-known property of a 
‘fractal’ object. The issue can be illustrated by the following example in 
O’Sullivan and Unwin (2003, page 142-150) and makes for an interesting 
student exercise.  
 
Geometry, space and level 
 
This exercise uses mapped examples of line objects that exist in a metric, 
usually Euclidean space but which if connected define a network space. Our 
concern is solely with the primitive/first order concept of length, but of 
course one of the lessons learned is that the dimensionality of some line 
objects could well be fractional and greater than unity. 
 
Intended learning outcomes 
 
After completing this exercise, students will: 
 

• Understanding how sinuous lines can be thought of as ‘fractal’; 
• Appreciate that the concept of a fractional dimension provides a 

means by which sinuosity can be measured; 
• Be able to estimate the fractal dimension of a  sinuous line using the 

so-called Richardson Plot; 
• Say why this has important implications for some measurement in 

geography. 
 
Resources needed 
 
Maps or other representations of very sinuous natural line objects such as a 
river or a linear boundary such as an indented coastline. Students familiar 
with the works of Douglas Adams might want to use map of Norway’s 
‘Fjordland’ with its ‘crinkly edges’. 
 
Dividers, pencil and paper, log tables and, ideally software able to complete 
a simple regression analysis (such as Microsoft Excel’s Analysis add in). 
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Suggested student briefing 
 
 

1. Find a reasonably detailed topographic map at a scale something like 
1:25,000 or 1:50,000 and select a length of river or coastline as your 
object of study. Obviously, since we are interested in the sinuosity of 
linear objects it makes sense to choose a river that shows 
meandering behavior!  Around a 20km (equivalent) length is about 
right and will not involve you in too much work; 

 
2. Now set a pair of dividers at a large equivalent distance on the 

ground, say 1km and ‘walk’ them along the river counting the 
number of steps. We will call this set divider separation and its 
equivalent as a distance on the ground the ‘yardstick’. Record the 
yardstick equivalent length and number of steps. It is permissible to 
record the final step as a fractional one; 

 
3. First can you see that the number of steps multiplied by the ground 

equivalent of the yardstick separation is an estimate of the length of 
the line itself? Experience suggests that measuring length of a map 
using this approach is both easier and simpler than the usual 
methods with bits of string and/or the edge of a piece of paper; 

 
4. Repeat using a halved yardstick, at say 500m equivalent; You should 

realize that this is also an estimate of the line length made at what in 
some sense is a higher resolution of analysis; 

 
5. Repeat again and again until the yardstick becomes so short that the 

experiment is impractical; 
 

6. You should now have a table of values for each yardstick of paired 
measure of the yardstick length and the apparent length of the line 
as mapped; 

 
7. Convert both the numbers of steps and the yardstick length to their 

logarithms (Base 10) and plot the resulting numbers with the 
log(number of steps) on the vertical axis and log(yardstick length) on 
the horizontal;  
 

8. If you have access to a spreadsheet program such as Excel™ you 
should be able to do this using that software.  Hopefully, the points 
will fall roughly along a straight line but success isn’t guaranteed! 
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9. Finally, use the spreadsheet (or a straight edge and a good eye) to 
fit a linear regression line to your data.  The regression equation can 
be used to estimate the fractal dimension. It is of the form: 

 
log[L(s)] = (1-D)log(s) + b  

 
In which the ‘Y’ is log[(L(s)] the total estimated length), b is the 
‘intercept constant’, which isn’t of concern, D is the fractal dimension 
and s is the step length (yardstick) 
 
Note that since the length estimated length, L, gets less the longer 
the length you set for s,  the slope of the line, shown by Mandelbrot 
to be (1-D), is negative. You need to do a little arithmetic to get D.  

 
Comment/answers 
 
Some results for a stretch of the New Zealand coastline from O’Sullivan and 
Unwin (2010, page 13) are shown in the Table 4.1. 
 

Resolution L 
(km) #segments, N Total length 

(km) 
2.5 132 330 
5.0 52 260 
10.0 18 180 

 
Table 4.1 Length measures for a stretch of New Zealand Coastline 

 
On a double log plot the three points in this case lie roughly on a straight 
line, whose negative slope, estimated by linear regression, is 1.4372.  This 
provides an estimate of the fractal dimension of this somewhat ’crinkly 
edged’  coastline. 
 
Suggestions for modification 
 
There are several issues related to this exercise that can usefully be 
introduced. First, note that the exercise and almost all the academic work 
on geography exploring the fractal concept uses a map representation of 
the feature whose fractal dimension is being estimated. This conflates the 
true fractal property with any cartographic generalization employed when 
the map was created. In reality, we should only do the experiment on the 
actual coastline. Any stored representation, such as the map we started 
with, has a limiting resolution such that ultimately it is composed of a large 
number of straight lines of geometric dimension 1. An interesting 
experiment in cartographic generalization is to use the same approach to 



 

86 
 

study the same line objects over using maps at different scales, for example 
in UK at 1:10,000, 1:25,000, and 1:50,000. 
 
The second issue that can be explored is that of measurement and 
measurement error. What is the ‘correct’ length of this coastline?  This may 
seem pedantic, but in fact it is a serous question when working with any 
digitally stored line data.  As a sometime marathon runner, the example I 
always give is that of the famous blue ‘running line’ you see painted on the 
road at the London event. In fact, most runners will actually run further 
than the 42km they sign up to! How can you compare the lengths of curves 
whose lengths are indeterminate; or which really is the longest river in the 
world?  
 
There is a superb website for all things fractal created by Frame, 
Mandelbrot and Neger at http://classes.yale.edu/fractals/ that provides Java 
applets to illustrate lots of related ideas. 
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4.5 Exercise (17): Direction 
 
Aims and introduction 
 
The previous two exercises should convince students that the fundamental 
spatial concept of length isn’t as simple as perhaps they first thought. Line 
objects illustrate a second spatial concept, that of direction/orientation that 
turns out to be equally tricky. In every-day language and geography we use 
numerous terms to describe direction such as ‘left/right’, ‘above/below’ 
often rather loosely to refer to spatial direction that would be better 
described by some compass direction such as ‘west/east’, ‘north/south’. 
Greater precision is provided if these directions are measured as angles in 
degrees (o) relative to some understood reference, most commonly taken to 
be north and measured clockwise from this reference direction.  Angular 
measure gives two problems one of which is very apparent in this exercise, 
the other of which might well give less mathematically-inclined students 
problems in the calculations suggested. The first is that in angular measure 
the numbers repeat like the hands of a clock every 360 o. Thus, for example 
the angular difference between the directions 359 o and 1 o isn’t 359-1 = 
358 o but 2 o. This gives periodic nature of the concept gives problems when 
we try to calculate summary measure such as the mean direction of a series 
of line objects.  The second arises when we have to record the angle 
through which the minute hand of a clock passes each day. Obviously, this 
is not 360 o since in 24 hours the minute hand will sweep through this angle 
24 times giving and ‘angle’ of 8640 o ! The alternative unit of angular 
measure that gets over this problem is the radian, defined such that there 
are 2π radians in a circle and one radian is 57.296o. In a day, the minute 
hand of a clock sweeps 24 x 2π = 150.8 radians. When using the computer 
in the following exercise it would be nice to shield students from this 
problem, but as will be seen the standard functions for necessary 
trigonometric functions have their arguments expressed in radian measure. 
 
Geometry, space and level 
 
This first exercise uses measured pure directions. Our concern is solely with 
the primitive/first order concept of direction. 
 
Intended learning outcomes 
 
After completing this exercise, students will understand: 
 

• How direction can be measured in degree and radians; 
• How to compute a directional average and its relative ‘strength’; 
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• That some problems arise in geography, and particularly physical 
geography, for which such analysis is necessary; 

 
Optionally, the exercise can also be used as a simple introduction to using 
formulae in Microsoft Excel™ and as a revision class in basic trigonometry! 
 
Resources needed 
 
Davis (2002, page 317) explores these issues very carefully and presents 
some data for the recorded directions of 51 glacial striae in a 35km2 area of 
southern Finland.  These are recorded as angular directions in degrees 
clockwise from north as in Table 4.2. 
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212 

 

 
Table 4.1 Directions of glacial striae in southern Finland  

(Source: Davis, 2002, page 317) 
 
These data are in the text file striae_in_finland_1 that can be imported into 
a spreadsheet such as Microsoft Excel™ and a map showing their locations 
forms Figure 5.13 of Davis (2002). In addition you will need either access to 
Microsoft Excel™ or similar spreadsheet and/or trigonometric tables. 
 
Suggested student briefing 
 
It is well-known that glacial striae can be used as a surrogate for the 
direction of ice flow in both valley glaciers and ice sheets. The data in 
Striae_in_Finland_1.txt relate to 51 measure of the vector direction of striae 
in a small 35km2 area of southern Finland. Each individual measure is 
recorded as an angle in degrees (o) clockwise from north and each reflects 
not only the general motion of the ice sheet, but also local deviations. A 
useful estimate of the overall ice sheet direction might be the mean of 
these directions. However, directions are tricky for two reasons that concern 
us here. First, they are relative to some assumed direction and in most 
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cases in geography we use one or other of the various ‘norths’ (grid, 
magnetic, true?) that would serve this purpose. We can then measure 
direction as an angle in degrees (o) clockwise from this from 0 o to 360o. Of 
course these are the same direction, showing that angular measure is 
periodic. This gives a difficulty in calculating any standard summary 
measures such as the mean direction. Simply adding up the bearings of all 
the observed vectors and dividing by the number may give misleading 
results. The solution is shown in Figure 4.2 and is to resolve each direction 
of the vector OB on the figure into two ‘components’ one expressing its 
‘northerliness’, which we’ll call V(n)  (the line OA on the figure) the other its 
‘easterliness’, which we’ll call V(e) (the line OC).  

 

 
Figure 4.2 Resolving a direction into orthogonal components 

 
These can then be separately averaged and the averages in each direction 
are then recombined to produce an average vector from the observations.  
The figure shows how this works If we have a set of observations of path 
direction, then we set some arbitrary datum direction (typically north) we 
resolve each and every direction into its two components V(n) and V(e) by 
taking the sines and cosines of all the observations, and then add each set 
together to get two totals:  
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The tangent of the mean direction is then given by: 
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On Figure 4.2 the line OA points to the north the angular bearing that we 
use is given by AOB (and OBC).  

We will illustrate this problem by determining the mean direction of a set of 
51 measurements of glacial striae directions taken from a 35 km2 area of 
southern Finland (see Davis, 2002, page 317 for a map).  

1. The easiest way to do all this uses a spreadsheet program such as 
Microsoft Excel™. The original data are in the text file 
striae_in_finland_1 . Incorporate these into Microsoft Excel™; 

2. Next create a second column in which you put the cosine of the each of 
the angular bearings. Obviously we are assuming here that you know 
how to do this, but there is a bit of a catch in that the so-called 
‘argument’ of the cosine function in Microsoft Excel™ needs to be not in 
degrees but in an alternative measure of angle called radians. The 
appropriate formula first converts the angle into radian measure and 
then finds the cosine as in ‘=COS(RADIANS(A1))’ etc. Sum this column 
to get V(n); 

 
3. Repeat forming another column this time of the sines of the angles and 

sum to get V(e). All that will be different is that the formula used will 
have SIN in it rather than COS. 

 
4. If you are doing this by hand it’s just a bit harder and you’ll need to 

know how to look up sines and cosines for angles that are greater than 
90o; 

 
5. Finally divide V(e)  by V(n)  to get in radian measure the tangent of the 

mean direction. The angle in radians that has this tangent is returned by 
the ATAN function and this can be converted back into degrees using  
the formula ‘= DEGREES(ATAN(X))’ where X is the location of your 
division; 

 
6. Getting from this to the actual direction needs a further step, which in 

this case is to subtract the numerical value from 180 to give the mean 
direction. What answer do you get? What do you think it might say 
about the direction of flow of the ice sheet that created the striae? 

 
This kind of analysis has been used to look at transportation routes, but by 
far the most common applications are in sedimentology, where the large 
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particles, or clasts, in a deposit show a preferred orientation that can 
provide significant environmental information 
 
Comment/answers 
 
The first part is easy, provided the angles are converted into radian 
measure and we end with the expression: 
 

7933.25
63672.31tan

−
=Rθ  

 
Getting from this to a mean direction may well challenge students’ 
knowledge of trigonometry and unfortunately Microsoft Excel™ doesn’t help 
(Use of scientific calculator with the required functions can automate this 
step). The required arctangent is -50.8097, which is a direction of 129.18o 
clockwise from north. The full calculations are laid out in the Microsoft 
Excel™ sheet striae_in_finland.xls 
 
Suggestions for modification  
 
What this mean does not do is account for the dispersion around the circle, 
in other words what sedimentologists studying the direction of clasts in river 
and glacial deposits call the preferred orientation.  An obvious extension is 
to find this, using a recombination of the sin and cosine sums to get the 
average, or resultant vector magnitude: 
 

∑ ∑+= 22 )()( nVeVVR    

whose mean turns out to be almost exactly 0.8. A further extension would 
be to ask how statistically significant different from random is such a 
preferred orientation. Davis’s book (2002, page 322) has further directional 
data for some strange geomorphological features, the sub-parallel 
ellipsoidal depressions on the Atlantic Coastal Plain in North Carolina called 
the “Carolina Bays” that can be explored using similar methods. The classic 
early paper on the analysis of directional data is Pincus (1956). 
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4.6 Exercise (18): Analyzing tree networks 
 
Aims and introduction 
 
Line objects seldom occur in isolation and are usually found as part of 
connected networks giving rise to the spatial concepts of network structure 
and connection. A great many geographical processes take place over a 
network of connected lines, such as transport and other communications 
networks, such that analytically it is usually more sensible to develop a 
network geography  in which ‘distance’ is represented by the property of 
connection rather than by any metric measure. The analogy with the 
concept of adjacency explored in Sections 2.4 and 2.6 should be obvious. 
 
A very important type of network, at least in geomorphology, is a branching 
tree of connected lines, where no closed loops are present and in the 1970s 
it was fashionable to examine the characteristics of river networks, which 
are probably the best example of this type of structure (see, for example 
Werritty 1972, Gardiner 1975, Gardiner and Park 1978).  The classic 
analysis applied to tree networks is stream ordering, most of which is 
closely related to a scheme proposed by Horton (1945) and developed by 
Strahler (1952)   
 
Geometry, space and level 
 
This exercise uses mapped examples of line objects that exist in a metric, 
usually Euclidean space but reduces the pattern of connection to a network 
that can be represented as a topological graph. Our concern is with the 
complex/second order concept of connection. 
 
Intended learning outcomes 
 
After completing this exercise, students will be able to: 
 
• Explain the difference between a tree and a graph; 
• Describe how connection in a tree structure can be ordered using 

Strahler’s 1952 modification of the original method due to Horton 
(1945); 

• Understand that the order of a stream is a measure of its relative 
position in a connected network and is essentially a topological 
measure; 

• Verify the so-called law of stream numbers for a natural river network 
and hopefully also understand that this is by itself not very useful ‘law’. 
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Resources needed 
 
Source maps at 1:25,000 or 1:50,000 on which river networks are 
represented. Tracing paper and perhaps also spreadsheet program for 
display and analysis of the results. 
 
Suggested student briefing 
 
1. From a topographic map at a scale of 1:25,000 or 1:50,000 (or nearest 

equivalents), trace off a drainage network represented by (usually) the 
‘blue lines’.  Try to find a reasonably large basin with, say, about 50 or 
so ‘sources’ where streams begin; 
 

2. Now ‘order’ this network using the so-called ‘Strahler’ method as 
shown in Figure 4.3.  To do this, give all the fingertip tributaries the 
order ‘1’.  Where two such 1st order streams meet, the stream that 
results becomes 2nd order, and should be labeled as such.  Note that 
any 1st order tributaries that join a 2nd order stream will not change its 
order until it meets another 2nd order stream, when the stream 
becomes ‘3rd order’;  

 

 
 

Figure 4.3 Strahler’s stream ordering method 
 (Source: after O’Sullivan and Unwin, 2003, Figure 6.8) 

 
3. Continue until all the streams have been ordered in this way and there 

is just one stream with the highest order reached; 
 

4. Now count the number of streams in each order. In the example this 
count is eight 1st, three 2nd and one 3rd; 
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5. Finally, plot a graph of the logarithm of the number of streams in each 
order on the vertical axis against stream order (1 , 2 , 3 , … n) on the 
horizontal axis. 
 

6. What does the resulting plot look like?  Do you get a straight line? 
 
Comment/answers 

 
Ordering schemes allow comparisons between stream networks.  Horton 
himself found that when classified in this way drainage networks obey 
various empirical ‘laws’.  For example, the numbers of streams of different 
orders from the highest downward, closely approximates a geometric 
series.  A geometric series is one like 1, 3, 9, 27, and 81 in which each term 
is obtained by multiplying the previous one by a fixed amount.  In this 
scheme there is always just one stream of the highest order and the 
numbers of streams with other orders corresponds closely to such a series.  
If a plot of the log10 of the stream number against stream order (1, 2, 3, 4, 
etc) is roughly a straight line it might be held to confirm this so-called ‘law’. 
Taking logarithms of the numbers in a geometric series will produce a 
straight line whose gradient is a measure of what below is called the 
bifurcation ratio. 
 
For example the river basin network shown in Figure 4.4 has 34 first, 10 
second, two third and by definition just 1 fourth, order streams.   
 

 
Figure 4.4 The Afon Dulas ordered 

(Source: after Unwin, 1981 Figure 4.5 b) 
 

It can be seen from Figure 4.5 that a plot of the logarithms of these 
numbers falls on to what is very nearly a straight line:  
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Figure 4.5 An illustration of the law of stream numbers  
(Source: after Unwin, 1981, Figure 4.6) 

 
In the early days this was viewed as the law of stream numbers and was 
sometimes thought to have geomorphological significance but it turns out 
that many natural tree networks conform to this rule, so this information 
may not be very illuminating in itself.  The bifurcation ratio, the ratio 
between consecutive terms in the geometric series, can be determined for 
different drainage networks and used as a direct comparison between 
cases. Natural drainage networks tend to vary in the range 3 to 5 according 
to rainfall, vegetation geology, and so on. 
 
Suggestions for modification 
 
An obvious and illuminative extension is to use a branch of a real tree. Does 
the same law hold? Another is to analyze a variety of drainage basins of the 
same overall ‘order’ to see how the bifurcation ratio varies with factors such 
as geology and climate. If the class is one of physical geographers it is 
useful to extend the discussion to consider the hydrological significance of 
the network of blue lines depicted on the source map and the 
rules/conventions adopted by the particular mapping agency in decided 
whether a given channel is actually a ‘river’. It should be clear that although 
the representation may be consistent, its hydrological significance is moot 
and this simple observation casts some doubt on the work of an entire 
generation of quantitative geomorphologists. 
 
To generalize further, it is also useful to ask for other examples of tree 
networks. One that might occur to students is the typical hierarchical 
structure of files and folder on their computer’s hard drive. 
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4.7 Exercise (19): Analyzing networks 
 
Aims and introduction 
 
A second type of connection structure is a network in which there is no 
restriction barring closed loops.  This is a much more general structure that 
is sometimes called a graph used to represent almost any relational 
structure. The theory of networks is called graph theory and is increasingly 
important in many disciplines. One type of graph that has recently been 
studied in detail is the small world., based on the surprise when we meet 
someone we know in an unlikely context and say ‘small world, isn’t it?’. A 
small world graph is one where most objects have only small numbers of 
neighbors, yet everywhere is relatively close to everywhere else (Watts, 
1999, 2003)  Watts and Strogatz, 1998). Watts and Strogatz (1998) 
speculate that small world graphs are a very common network structure.  
As examples, they discuss the neural network of a particular type of worm, 
the electrical distribution network of the Pacific Northwest, and the ‘co-star’ 
network of Hollywood actors!  
 
More generally, because graphs express relations between the elements of 
a set, they can be used to represent almost anything where we have set of 
related objects in a relational structure.   It follows that although the 
exercise starts from a road map, many of the simple analytical techniques 
available for graphs are equally applicable to any adjacency matrix (see 
Sections 2.4 and 2.6)..   
 
Geometry, space and level 
 
This exercise uses mapped examples of line objects that exist in a metric, 
usually Euclidean space but reduces the pattern of connection to a network 
that can be represented as a topological graph. Our concern is with the 
complex/second order concept of connection. 
 
Intended learning outcomes 
 
I would be the first to admit that this exercise involves some potentially 
difficult ideas from linear algebra and its relevance to the analysis of the 
concept of connection might not be immediately apparent, but it is a very 
useful way to introduce students to some key ideas. It is most useful if 
extended and modified in the suggested manner. 
 
After completing this exercise students will be able to: 
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• Explain and show how a mapped network can be reduced first to a 
topological graph and then how that graph can be written as an 
connectivity matrix to describe the pattern of connection in the network; 

• Understand that such matrices can be manipulated to develop numerous 
descriptive measures of the concept of connection. 

 
Resources needed 
 
Pencil and paper and if extended, software such as MINITAB ™ or 
MATLAB™ that will perform matrix multiplication. 
 
Suggested student briefing 
 

1. In the same way that analysis by stream ordering reduces the stream 
segments to a simple topological pattern of connection, in which we 
are not interested in true distances or direction but simply in 
connection, most analysis of a network starts by reducing it to a matrix 
that records the pattern of connection between the various entities in 
the system. In this way of recording connection, the junctions or 
objects are called vertices and the links  are the edges; 

 
2. Consider the map of the main road network of the Isle of Skye as in 

Figure 4.6. 
 

 
Figure 4.6 The main roads of Skye 

 (Source: after Unwin, 1981, Figure 4.7 a) 
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There are many ways to represent the pattern of connection between 
the nine selected places on this map, but the simplest is to draw a 
picture similar to that in Figure 4.6.  

 
 

Figure 4.6 The graph of a network 
(Source: after O’Sullivan and Unwin (2003) Figure 6.9 a) 

 
The example has just four vertices, whereas your graph will have nine 
and you may well discover that there is more than one way of drawing 
this graph. 

 
3. The graph in our simple example can now be abstracted further to 

develop a topological connectivity matrix, let’s call it A,  in which for 
each vertex we  set the element equal to ‘1’  = 1 if for that row and 
column are connected and 0 if they are not.  The matrix, A, 
corresponding to the little example above is: 

 



















=

0110
1011
1100
0100

d
c
b
a

dcba

A    

 
In this the rows and columns are labeled with the vertex to which they 
correspond. Note that row and column order is arbitrary, but must 
both be the same.  Note also that, since the main diagonal entries 
from top left to bottom right are all coded 0, we do not consider 
vertices to be connected to themselves.   

 
4. Create the connectivity matrix A for the Skye road network; 

 
Now answer the following questions: 
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5. Which place is the most connected and why? 
 

6. Is this matrix symmetric and if so why? Under what circumstances 
might a connectivity matrix not have this property? 

 
7. On the so-called principal diagonal where the row and column vertex 

is the same, do we put a ‘1’ or a ‘0’? 
 
Comment/answers 
 
A graph of the road network will look like Figure 4.7 

 
Figure 4.7 Skye’s main roads 

(Source: after Unwin, 1981, Figure 4.7 b) 
 
The matrix derived from it is: 
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100100000
010100000lg
001100000
111110000
000111100
000011010
000010111
000001111
000000111

/

`

Ardvasar
olE

Kyleakin
Broadford
Sligachan
Dunvegan

Portree
Kensalyre

Uig
ArElKyBrSlDuPoKeUiToFrom

 

 
Broadford has the most links (4), but this is only one possible measure of its 
position in the network. This adjacency matrix is symmetric about the main 
diagonal from top left to bottom right, because edges in the graph are 
undirected : if vertex vi is connected to vj then the opposite is also true.  In 
a directed graph this is not necessarily true, and edges have a direction 
from one vertex and to another.  This distinction can be important in how a 
street network is defined if there is a one-way system in operation.  In our 
example we have put 1’s down the principal diagonal to indicate that we 
consider a place to be connected to itself. Essentially this is a research 
decision, but it does have some ’interesting’ mathematical consequences 
(see Unwin, 1981, pages 90-93). 
 
Suggestions for modification 
 
If students have available software such as MINITAB and MATLAB that 
allow easy matrix manipulations it is instructive to multiply these matrices 
by themselves (that is, ‘power’ them).  Unwin (1981, pages 86-93 has a 
discussion of what this can reveal. For example, the entries in the squared 
matrix record the number of different ways of moving between the 
corresponding vertices in two step and the entries in the principal diagonal 
will be the number of ways of going from a vertex to one of its neighbors 
and back again. It is simpler to think of these numbers as the number of its 
neighbours. If we record the power of A at which the entry in each matrix 
position first becomes non-zero then we get a matrix that records the 
topological shortest paths in the graph.  This is a sort of distance matrix 
(see Chapter 2). At considerably more advanced level, the eigensystem of 
this type of matrix is also useful (see Tinkler, 1977). 
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Chapter 5 Area: the devil’s variable?

5.1 Introduction

As Chapter 1 indicated, area objects provide a very rich set of spatial concepts in the 
lattice space created by contiguity relationships. In the primitive/first order are 
concepts such as boundary, shape and region, which at second order generate ones 
such as adjacency, fragmentation, pattern/clustering (autocorrelation) and so on. In 
this chapter we develop student’s appreciation of the basic spatial concepts of area 
itself, shape, adjacency and pattern. The latter is address through extended work 
mapping and analyzing pattern using a public domain software system developed and 
maintained by Dr. Luc Anselin that he calls OpenGeoDa™ (pronounce as Open ‘gee-
odder’).

These concepts at first sight seems obvious and simple but, as these exercises 
will show, area objects come in many varieties, and are difficult to map and 
summarize. The simple fact that they can often be modified  by changing the 
way they are defined leads to a classical issue, the modifiable areal unit problem, 
or MAUP. The complications that all this introduces justify the notion that area 
really is the devil’s variable.
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5.2 Exercise (20): Types of areas on maps

Aims and introduction

A brief thought experiment or examination of a map will show that geographic 
areas come in numerous varieties. At high level there is a clear distinction to be 
made between those that are in some sense natural whose boundaries are 
unequivocally given by phenomena, such as the shoreline of a lake or island, the 
edge of a forest stand, or the mapped boundary of a particular soil type. The 
area objects so defined, respectively a ‘lake’, ‘island’, ‘forest’ and ‘soil type’ might 
be open to some argument (how dense do trees have to be before they are a 
‘forest’?) by in principle at least their boundaries are fixed and immutable. Once 
recognised, this class of area objects is therefore self-defining.  

We can contrast such natural areas with those imposed by human beings, such 
as countries, states, counties and census tracts. Such areas might or might not 
coincide with something natural, but their key property is that they are 
modifiable, not by changing anything in the underlying real world, but by simply 
changing their boundaries. Almost always such imposed regions have complex 
boundaries.

A third type of area frequently used in analysis arises where the space is divided 
into a regular shapes each of which is the same and which nest together and 
cover the region of interest without any overlap. The classic example is a grid of 
small square (usually and roughly) pixels (‘picture elements’) used in satellite 
remote sensing and some types of GIS. Clearly such areas are also imposed.

Although it will not be considered in this exercise, for completeness mention 
should also be made of a second type of area that is sometimes used. This is the 
Voronoi/Thiessen/Dirichlet region surrounding any point object and defining all 
those areas that are closer to that point than they are to any other. 

At this level of generality we can thus distinguish between natural’, imposed, and 
gridded types of area, but there are even more variations on the theme that 
occur in relationship to the nature of the object and its boundaries. First, is the 
area defined internally homogeneous, or are there ‘inclusions’ of other types of 
area that exist in reality but have been lost by the way the area is represented, 
either on a map or in a data base? The archetypical example of this is an area of 
a specified soil type that might well have inclusions of some other type that are 
too small to record, but a large lake might well have islands that are too small to 
map, and so on. Second, what is the nature of the boundary of the area? Is it a 
certain line that is crisp in the sense that, in principle at least, one could walk 
along it, or is the boundary in some sense uncertain? Again the archetypical 
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example of such boundary uncertainty is that of a soil, where one type might 
grade imperceptibly into another. 

Finally, in this typology we can consider the relationship of each area with other 
similar objects. Some are simply isolated examples that stand alone (of course 
these can also be planar enforced). Others, such as a pattern of historical fire 
burn areas in which separate fires can have burnt over the same area, in 
principle can overlap spatially. Yet others are planar enforced, that is, they nest 
together like pieces in a jigsaw puzzle, completely covering the region with no 
gaps between them.

Geometry, space and level

Area objects create a space that can perhaps best be called a lattice in which 
adjacency is the measure of distance. If we know their boundaries they can of 
course be displayed in a metric space such as the Euclidean. The hierarchical 
level is essentially primitive, concerned with the identification of individual 
examples of area objects.

Intended learning outcomes

After completing this exercise students should be able to:

• Define and exemplify different types of area;
• Outline why there is a possible problem using information about areas 

that are modifiable (the MAUP).

Resources needed

A selection of maps or on-screen equivalents. A suitable map series to pick would 
be the UK Ordnance Survey 1:50,000 Landranger™ series.

Suggested student briefing

1. Familiarize yourself with the area concepts related to the type of area 
( Natural/Imposed/Grid?), their internal nature 
(homogeneous/inhomogeneous/), boundary (Crisp/uncertain?) and 
relationship with other areas (isolated/overlap/planar enforced);

2. Select a sample Ordnance Survey 1:50,000 scale map and examine it 
carefully (you can of course do this on screen, from, for example 
http://www.streetmap.co.uk) to find at least ten examples of areas that 
have been mapped. In each case classify the nature of the area according 
to its type, internal character, boundary and relationship to other similar 
areas. In each case record a name for the area and a grid reference;
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3. Record you results in a table similar to Table 5.1;

Area object Type? Inside? Boundary? Relationship?

Table 5.1 recording types of area object

4. With three recognize ‘types’, two sorts of internal characteristic, two type 
of boundary and three possible relationships, this allows for the possibility 
of 3x2x2x3 = 36 differing types of area. You could try to see if you can 
find an example of each and every one of these!

Comment/answers

The simple way to do this exercise is to work from the map key to see what 
types of area are mapped and then search for an example on the map. Using OS 
1:50,000 Sheet 115 Snowdon, Table 5.2 presents a selection of possible 
candidates. It is NOT exhaustive.

Area object Type? Inside? Boundary? Relationship?
675705 wood natural homogeneous? crisp isolated
605735 rocks natural inhomogeneous uncertain isolated
675835 grid 
square

imposed homogeneous certain Planar enforced

665675 National 
Trust NT

imposed homogeneous crisp isolated

560550 Llyn 
Cwellyn

natural homogeneous crisp isolated

580628 Arfon 
District

imposed homogeneous crisp Planar enforced

696665 Craig Y 
Dulyn

natural inhomogeneous uncertain isolated

etc etc etc etc etc

Table 5.2 Some Snowdonian area objects

Suggestions for modification

A very simple question to ask is what the implications are for determining the 
area of the entity concerned. A useful extension would be to repeat the exercise 
with a simple k-colour map such as one of geology or land use.
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5.3 Exercise (21): Colour maps for area objects

Aims and introduction

Chorochromatic or area-colour maps are fairly commonly used to show 
phenomena such as geology and land use. Frequently these are the result of 
what has been called an interpreted mapping whereby a surveyor has classified 
what is seen on the ground into some existing, consistent, externally-derived 
scheme, such as a list of land use categories or soil types. Such maps are often 
very uncertain, through a combination of fuzziness in the phenomenon being 
mapped, inclusions of some characteristics that are too small to represent in 
either the data base or on the map, and boundary uncertainty. A good example 
is a soils map. We might be uncertain about what is being mapped, which itself 
might be a fuzzy object. There might be inclusions of some characteristic that 
isn’t the one mapped but that are too small to show at the map scale, or we 
might have bands of transition between categories, all of which make for 
uncertainty about exactly what soil there is at any particular location.

Geometry, space and level

Area objects create a space that can perhaps best be called a ‘lattice’ in which 
adjacency is the ‘distance’. If we know the boundaries they can of course be 
displayed in a metric space such as the Euclidean. The hierarchical level is 
essentially primitive but the implications of what is discovered for more complex 
concepts and analysis are important.

Intended learning outcomes

After completing this exercise students should be able to:

• Recognize an area-colour map;
• Critically evaluate its cartography;
• List the sources of uncertainty in such maps;
• Understand some of the complications in accepting such maps at their face 

value.

Resources needed

Internet browser

Suggested student briefing
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1. Use Google Images™ or a similar search engine to find examples of 
simple colour maps.  Finding the right search terms might well be your 
problem here! 

2. In each case, ask yourself how well the map actually represents the 
phenomenon being mapped. Questions to do with representation that you 
might ask relate to issues of fuzziness, the importance of scale, and how 
well the boundaries of the areas mapped are known;

3. Search for a copy of the map that Simon Winchester (2002) claims 
’changed the world’, which is William Smith’s superb first geology map 
dating from 1815. Lots of sites have this map, try: 
http://earth.unh.edu/Schneer/map2.jpg;

4. How many ‘colours’ did Smith use?  Having looked at Smith’s map, next 
find a map of the political ‘colour’ of the States of the USA in the 2008 
Presidential election. An example of many is at 
http://www.npr.org/news/specials/election2008/2008-election-
map.html#/president?view=race08;

5.  In what important ways does this map differ from Smith’s?  .

Comment/answers

There are numerous examples of soils, geology or land use maps on WWW. 
Figure 5.1 is a very attractive example of Canadian land cover which has over 
thirty categories:

Figure 5.1: A chorochromatic map of Canadian Land use

A much simpler map of cell/mobile telephone coverage in USA is at:
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http://www.cellonenation.com/images/coverage_map_home.png
and can be used to illustrate uncertainty in the classification and probable 
boundary issues.

William Smith’s map was one where in principle at least the boundaries between 
colours are natural whereas those between the states of the USA are obviously 
imposed. The difference is real and important.

Suggestions for modification

None
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5.4 Exercise (22): Choropleth maps for area objects

Aims and introduction

Choropleth or area-value maps are honest in the sense that they are true to the 
data, but frequently dishonest when used to draw conclusions about the real 
geography of the phenomenon being mapped.  All this exercise does is to ask 
students to look carefully at some published examples.

Geometry, space and level

Area objects create a space that can perhaps best be called a ‘lattice’ in which 
adjacency is the ‘distance’. If we know the boundaries they can of course be 
displayed in a metric space such as the Euclidean. The hierarchical level is 
essentially primitive but the implications of what is discovered for more complex 
concepts and analysis are important.

Intended learning outcomes

After completing this exercise students will hopefully:

• Never look at a choropleth map again without taking a very large pinch of 
salt;

• Be able to list the complications that need be considered when using such 
maps to describe regional patterns;

• Appreciate the importance of choice in the mapping techniques used;
• Understand why the addition of colour can reduce rather then enhance 

the legibility of these maps.

Resources needed

Internet browser

Suggested student briefing

1. As in Exercise (21) use a search engine to find an example of a good 
choropleth map and comment on what it really shows if we consider any 
or all of the following sets of issues:

• The areas used.  Are these natural or imposed?  If the former, how 
were they defined and by whom?  If the latter, are the areas used 
appropriate?  Do large areas dominate the way the map looks?  Are 
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the ‘steps’ at the edges of each block of color likely to reflect 
variation in the underlying phenomenon?

• The data.  Are they counts of some sort?  If so, there is an in-built 
tendency for larger areas to have bigger values and the map may 
be worthless.  Choropleth maps only make sense if the numbers 
being mapped are ratios, either areal densities (such as number of 
people per unit of area) or population rates (such as the number of 
births per thousand population in the area).  If the data are ratios, 
are these based on low numbers?  If so the mapped values may 
very unstable to quite small changes.  For example, if we add one 
person to an area in which there is already just one person, we 
double the population density, whereas adding one to several 
thousand people makes virtually no difference at all;

• The classification used.  Prior to the use of computers almost all 
choropleth maps were classed, that is, each datum was assigned to 
one of a small number of classes.  Experience suggests that from 
five to seven classes is appropriate, but the appearance of a map 
can be changed dramatically by varying the number of classes. 
Evans (1977) describes a large number of possible schemes.  His 
conclusion is that you must examine the statistical frequency 
distribution of the data before deciding on a classification scheme. 
Tobler (1973) pointed out that modern displays don’t actually need 
to class choropleths since they are capable of showing as many 
shades of ‘color’ as needed.  His point was debated but, nowadays 
it seems that classless choropleths are rapidly becoming standard;

• Finally, the most obvious thing about a choropleth is the symbolism 
used.  Traditionally, choropleths were created by shading each area 
using a ‘screen’ pattern of lines such that the more lines, the darker 
the area looked and the higher the value.  It is now more usual to 
use a graded series of a single color to show the increase in 
intensity.  Either way, how you choose to shade the map greatly 
affects its final appearance.

Comment/answers

Are the areas mapped of sensible size or would a table of numbers have done 
just as well? Does it make the very common error of using raw numbers? Is the 
frequency distribution of values sensibly used in the classification or is it 
‘classless’? Is the symbolism sensible and appropriate?

A very clear example of the most common error is this choropleth from an 
agency that ought to know better is shown as Figure 5.2.
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Figure 5.2 Good cartography, pity about the numbers!

The error is that of showing absolute values of the acreage in each of the US 
counties. It follows inexorably that the large counties (check out the mountain 
states) will tend to have more area devoted to almost anything than will a small 
county (such as in the east). Despite being well-drawn the map is worthless, and 
good cartography does not guarantee a good map, the numbers matter! Figure 
5.3 shows another example using a similar colour ramp that does make some 
sense:

Figure 5.3 This is better!
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This is standardized by the ‘at risk’ population, the number of school children in 
each county. Colour on these maps must be used with extreme care, see Brewer, 
C.A. (1994).

Suggestions for modification

An exercise that has been useful in the past is to give students a series of 
contrasting variables to be mapped in summary form as frequency counts and 
then ask them to devise an appropriate class interval scheme and symbolism. 
There is no real need to create maps to make the point about the choice of 
mapping method!
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5.5 Exercise (23): Measuring area

Aims and introduction

This simple exercise asks students to estimate the area of some area object, 
such as the continent of Australia using the standard method in GIS based on 
Simpson’s Rule method of integration

Geometry, space and level

Measurement of area by the method listed assumes a Euclidean metric space 
with a string of boundary coordinates, but the concept is essentially 
primitive/first order.

Intended learning outcomes

After completing this exercise and reflecting on what it teaches, students will:

• Know how to compute the area of a closed polygon representation of a 
real world area;

• Understand that almost all measurements made from maps or their digital 
representations need to be qualified by the method used to measure 
them;

Resources needed

Source map on an equal area projection, pencil and paper, spreadsheet program. 
The collection of the (x,y) co-ordinates can of course be done using a 
digitizer/graphics tablet or via an on screen map and mouse.

Suggested student briefing

A simple way to find the area of any area object (natural or imposed) uses a 
tried and tested approach known in mathematics as Simpson’s Rule for numerical 
integration. The approach is shown in Figure 5.4 below:
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Figure 5.4 Measuring area from boundary co-ordinates (Source: after O’Sullivan 
and Unwin, 2010 Figure 7.2)

By dropping lines from each vertex of a string of (x,y) co-ordinates defining the 
boundary of the polygon that represents an area to the X-axis, we define a series 
of trapezoids, such as for example the one defined by the string ABB’A’ . Simple 
mathematics gives the area of this little trapezoid as the difference in x co-
ordinates multiplied by the average of the y co-ordinates:

( ) ( ) 2.''ofArea ABAB yyxxAABB +−=

In this case xB is greater than xA, so this area will be a positive number;  

If we move round the polygon repeating the same calculation for each trapezoid 
in a clockwise direct at first all these areas will be positive as we move away 
from the Y-axis and x always increases. However, when we turn the corner and 
move back towards the Y-axis, so the reverse is the case, and the computed 
areas become negative numbers that are subtracted from the grand total.  What 
we are left with at the end is actually the required area of the polygon. Provided 
we work clockwise and come back to the starting vertex, the general formula is 
simply:

( )( )∑
=

++ +−=
n

i
iiii yyxxA

1
11 2/area,Polygon

where (x n + 1, yn + 1) is understood to bring us back to the first vertex (x1, y1).  

1. Trace the shoreline of some area object taken from a map (such as the 
continent of Australia) taking care to ensure that the source is drawn on 
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an equal area map projection and record its boundary as a series of (x, y) 
co-ordinates;  

2. Use the method outlined above to compute its area.  This is easily done 
using any spreadsheet program.  Enter your co-ordinates into the first two 
columns and copy these from row 2 onwards into the next two columns, 
displacing them upwards by one row as you do so.  Make a copy of the 
first co-ordinate pair into the last row of the copied columns.  The next 
column can then be used to enter and calculate the trapezoid formula. 
The sum of this column then gives your estimate of the continent’s area. 
You will have to scale the numbers from co-ordinate units into real 
distances and areas on the ground. 

Comment/answers

For Australia, using a 1:30 000 000 map as a source and with just 45 co-
ordinates for the shoreline gives an area of 7,594,352 km2. A semi-official value 
is 7,686,850km2. The closeness of this estimate to an official value is clearly an 
accident. 

Suggestions for modification

The real value of this exercise is as stimulus for several possible discussions, 
similar in some ways to those that might have been followed about ‘distance’. 
Topics that might be introduced are:

a) The uncertainty/error in area estimates. Which is ‘right’ and how could we 
tell? Almost all exact ‘geometric’ calculations on spatial data give answers 
that are really estimates of some true, but unknown value;

b) What does this say about other calculations does an area estimate 
underpin (e.g. spatial density, most of the point pattern measures, shape 
indices);

c) This assumes, reasonably in this case, that the inside of the area is 
homogeneous and the boundary is ‘crisp’. What are the implications if, as 
in the case of the area of some defined soil type, neither of these 
conditions are met;

d) How would you measure the total area of some phenomenon, such as a 
land use type that at the study scale is made up of hundreds of very small 
parcels? This could well introduce so-called ‘dot planimetry’ or even, post-
GIS, counting the alike cells in a colour raster representation of the 
phenomenon;
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e) Lastly, one to think about is what if the edge of the area (such as a 
coastline) is itself fractal?

There is a literature on area measurement, see for example Gierhart (1954), 
Frolov and Maling (1969).
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5.6 Exercise (24): What do we mean by shape?

Aims and introduction

All areas have a shape and sometimes this can be of interest (examples include 
the hexagons of central place theory, the streamlined forms of drumlins, and so 
on), but the concept isn’t an easy one to define and attempts to ‘measure’ it 
have a long history. A simple definition is the set of relationships of relative 
position between points on the edge of the object which is unchanged by any 
changes in scale or size. Like Exercise (23), this exercise is intended primarily to 
get students to think about the concept.

Geometry, space and level

Describing shape by the method listed assumes a Euclidean metric space with a 
string of boundary coordinates, but the concept is essentially primitive/first 
order.

Intended learning outcomes

After completing this exercise students will:

• Understand that area have shapes and that visually these can be seen to 
differ;

• Have refreshed their memories on how to measure both area and 
distance;

• Be able to derive the compactness ratio, comparing the observed shape 
with an area having the same perimeter as the chosen area object.

Resources needed

Pencil and paper, plan outline of some chosen area object. Drainage basins as 
defined by their watersheds from topographic maps make good examples.

Suggested student briefing

1. On the map supplied find a small drainage basin and define and trace its 
perimeter, upstream of some chosen point on the main stream;

2. Now consider the two-dimensional shape of this basin. How would you 
describe it? Is it elongated? Simple or complex? Compact? Streamlined? 
Clearly we have a vocabulary to describe the concept of the shape of an 
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area, but not everyone would agree about the words to use to describe 
any particular example. What environmental factors might have a role to 
ply in determining the shape of this basin and why?

3. Next, try to characterize the shape of your drainage basin using a 
numerical shape index. There is a huge choice, and most depend on some 
comparison with a mathematically defined simpler shape such as a circle. 
Since a circle is the most compact shape of a given area that can exist, a 
reasonable measure is a compactness ratio, sometimes called the 
isoperimetric quotient. This is simply the ratio of the observed area to that 
of a circle having the same perimeter:

2

4
P
AS π=

In this A= the measured area and P is its perimeter. This 
isn’t hard to derive from elementary geometry and the so-
called iso-perimetric inequality says that S will be less than 
or equal to 1;

4. Use whatever method you think best suited to measure the 
length of the perimeter of the watershed of your drainage 
basin and its area and use these to compute this index;

5. Now chose another drainage basin that seems visually to 
have a more/less compact shape and repeat the analysis. 
Does the compactness ratio help?

Comment/answers

This exercise can be made more valuable as an in class exercise in which the 
results are shared and comparisons made over a wide range of drainage basins. 
Interpreting the results for a variety of landscape, may well tax your knowledge 
of geomorphology and geology. Handle with care.

Suggestions for modification

As above.
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5.7 Exercise (25): Mapping area data using OpenGeoDa™

Aims and introduction

This is essentially a guided exercise in choropleth map creation using Dr. Luc 
Anselin’s OpenGeoDa™ package. It can also be undertaken in a GIS such as 
ArcGIS™. It is a great help to have completed Exercise (22).

Geometry, space and level

As Exercise (22).

Intended learning outcomes

After completing this exercise students will:

• Be able to use OpenGeoda™ with supplied data as a shapefile to produce 
choropleth maps;

• Appreciate the clear need to map either some spatial density or population 
ratio and not the absolute values;

• Understand how choice of different class intervals and color ramps can 
greatly alter the ‘look’ of this type of map.

Resources needed

Computer running the OpenGeoDa™ package with the supplied data set on 
sudden infant death syndrome (SIDS) in North Carolina. If ‘presentation’ maps 
are required with scale bars, north points and the like, then access to a standard 
drawing package such as Microsoft Paint ™ will also be needed. 

Suggested student briefing

1. If this has not already been done for you, or you are using your own 
machine, visit the website at http://geodacenter.asu.edu and download 
and install the OpenGeoDa™ software. This is the latest incarnation of 
software for spatial statistical analysis created by Dr. Luc Anselin. You will 
need to go through a registration process to do this. The response from 
the Center is almost always very rapid, but allow time for this to take 
place. For reference, also download a copy of the pdf of a 244 page 
Exploring Spatial Data with GeoDa,  a workbook, produced by Anselin for 
the Center for Spatially Integrated Social Science (CSISS). Find it at the 
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same website by clicking on TRAINING and SUPPORT>GEODA 
HELP>TUTORIAL;

2. OpenGeoda™ uses ESRI™ shapefiles to define the pattern of area objects 
in use. If you have ArcGIS ™ available, this is a useful feature, and it 
permits integration with other GIS packages that have shapefile filters. 
Now get the data, which are under DATA>SAMPLE DATA and are in the 
files SIDS.zip and SIDS2.zip that you can find towards the bottom of the 
list when you scroll down.  Unzip them into a folder you have named and 
remember where you have put them;

3. These contain data for Sudden Infant Death Syndrome (SIDS) in the 100 
counties of North Carolina (NC). The county is a basic administrative unit 
in the USA that is often used in mapping. These same data have been 
used in a series of papers in spatial statistical analysis by Cressie and his 
collaborators (Cressie and Read, 1985, 1989; Cressie and Chan, 1989). 
Their source is a table in Cressie (1993);

4. Before you do any mapping using OpenGeoDa™ with these data, find an 
atlas and have a look at the basic geography of the State noting especially 
which counties contain the major urban areas; 

5. The complete data in SIDS2 has records for 100 counties as:

AREA
PERIMETER
County NAME
County ID
FIPS number
Cressie ID as in his book, Table 6.1, pages 386-389
BIR74: number of births 1974-1978
SID74: Number of Sudden Infant Deaths, 1974-1978
NWBIR74: number of non-white births i1974-1978
BIR79: number of births 1979-1984
SID79: number of Sudden Infant Deaths, 1979-1984
NWBIR79: number of non-white births 1979-1984
SIDR74, SIDR79, NWR74 and NWR79 are derived rates in the two 
periods

Note that these SIDS totals are for a five year summation not, as perhaps 
is the impression given in the CSISS Workbook, for the years 1974 and 
1979.
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6. Now use OpenGeoDa™ to draw a simple choropleth map on screen. 
Proceed as follows. First, open OpenGeoDa™, which will lead to a simple 
on-screen menu bar. Next, select FILE>OPEN SHAPE FILE and navigate to 
where you have stored the unzipped SIDS2 data. Now double click on the 
SIDS2 shapefile (note the icon used). The result will be a map of North 
Carolina’s counties in which each and every county is shaded a monotone 
green. This is because at this stage you haven’t specified a variable to be 
mapped;

7. Create a choropleth map using >MAP>QUANTILE with the default of four 
classes and selecting the BIR74 total births data. Your reward will be a 
pretty four class choropleth map with a rather pleasing color ramp from 
yellow to dark brown, but does it tell you anything about births in NC? 
Hopefully you realize that the high value counties are all those that 
include major cities such as Charlotte, Winston-Salem, Greensboro, 
Raleigh, Fayette and Wilmington.  Basically, we are looking at a map of 
the population and the reason is, of course, our decision to map the 
actual totals and not some population ratio or areal density. Should you 
wish you can SAVE this map at the EDIT menu by using COPY TO 
CLIPBOARD and then pasting into, say, Microsoft WORD™.  A right click 
on the map gives an option to save in some standard graphics formats;

8. Go right back to the start using MAP>RESET and repeat these steps but 
try to map the SID74 data. Using MAP enables a range of possible class 
interval selection schemes to be applied, but I suspect that you won’t 
easily create a sensible map. In part this is because we are still using raw 
totals, and so have the population factored into these numbers, but in 
addition, and as can be confirmed using EXPLORE>HISTOGRAM or 
EXPLORE>BOXPLOT and selecting the SID74 data, the frequency 
distribution is dominated by zeros and is basically Poisson. One way round 
this problem is to plot the data on an area cartogram base and a version 
of this is available as an option in OpenGeoDa™;

9. Clearly, you need to express the SID74 totals as a rate of incidence, Ri, 
and the most obvious variable we have to act as denominator in such a 
calculation is the total births over the same time period found in the 
column BIR74. OpenGeoDa™ allows some very basic operations on its 
data tables. To calculate the proportion of SIDS deaths in the first period 
as a proportion of the total number of births, first

FILE>CLOSE ALL to start a new analysis.

Use FILE> OPEN SHAPE FILE and navigate to and select the SIDS 
shapefile and data (not SIDS2). You will  get the familiar green map.
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Now add a column to the data table using TABLE>FIELD CALCULATION 
and select RATE OPERATIONS. The table itself is shown and it is useful to 
see how the data are held as a simple matrix of numbers. The appropriate 
settings are:

Result : call this RATE
Method: set as raw rate
Weight file: leave blank
Event variable: select SID74
Base Variable: select BIR74

To do the computations click on APPLY and then CLOSE to get a new 
column, called RATE, into the data table. Confirm that you have some rate 
estimates using the viewing option in TABLE and by use of 
EXPLORE>HISTOGRAM and selecting RATE. You can get to this map using 
the supplied rate data (expressed as a rate per thousand) in SIDS2, it is 
useful to have gone through the logic step by step and also to be able to 
compare the raw numbers map with the rates one;

10. The rest is easy. Use MAP>QUANTILE and select RATE to get a map of 
the birth total standardized rates of SIDS deaths in NC. To save the map 
in a standard graphic format that can be exported and used in a report in 
WORD or have its graphics improved in a standard drawing package, right 
click on the map and then use the ‘save image’ command to save the map 
as a .bmp file. To save the legend, resize its right margin in the usual 
way, and then right click and use SAVE TO CLIPBOARD; 

11.If this map doesn’t appeal, then experiment with different classification 
schemes, data transformations and the 1979 data. You might also like to 
look at the SIDS rates relative to the numbers of non-white births in the 
same period, calculated as NWR74. 

Comment/answers

Figure 5.6 is the unimproved map of the total Births BIR74 in the five years to 
1974. Comparing it with the locations of the counties that include the cities of NC 
it can be seen to be really simply a map of the population.
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Figure 5.6 Raw total births to 1974, BIR74

Figure 5.7 shows the absolute totals in the SID74 data which give almost the 
same map:

Figure 5.7 SIDS totals for 1974, SID74

These data illustrate quite well the difficulties in any choropleth mapping (see 
Exercise (22)). Specifically, we have:

a) Small numbers, including several of the 100 counties with a zero score. 
You can confirm this by TABLE>PROMOTION and scrolling across to the 
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SID74 column. Small numbers mean that computed rates are very 
sensitive to quite small changes in the data;

b) The frequency distribution as shown in Figure 5.8 is Poisson, not normal, 
which makes the selection of class intervals problematic:

Figure 5.8 Frequency distribution of SIDS numbers

c) Counts, not population (or maybe area) corrected rates. To circumvent 
this issue, one option is to compute a SIDS rate for each of the time 
periods as:


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In which si is the count of SIDS deaths for the i-th county and ni 

is the total births in the same period. The 1000 multiplier simply gives us 
the rate per 1000 births and is conventional when using this type of data. 
In fact all the Cressie papers modify this rate estimate by adding 1 to 
each of the SIDS scores to give a rate estimate as:
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This has the effect of allowing any maps to discriminate (slightly) among 
the counties that have zero total SIDS deaths. The best maps should 
show a clustering of counties with unusually high SIDS incidence in the 
north-east and south of the State, which is a linear function of the non-
white births for the first time period (1973-1978). 

Students should see why almost invariably we must map some rate or 
other and that by changing the ‘classing’ scheme we can change the ‘look’ 
of our maps. For example, Figure 5.9 shows the effect of using the SID74 
numbers in a percentile map;
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Figure 5.9 A map based on percentile class intervals, SID74 totals

At the end of the briefing we finally get to calculate and draw a proper map of 
the rates of SID as a proportion of the total number of births, the histogram for 
which is shown as Figure 5.10.

Figure 5.10  Frequency distribution of the rates of incidence of SIDS relative to 
total births

The final simple quantile map is shown as Figure 5.11. Whether it helps 
understand the phenomenon is perhaps moot.
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Figure 5.11 Map of the calculated RATE of SIDS 1974

Suggestions for modification

By now students might be interested in using OpenGeoDa™ more generally. 
They could do worse than to work through Exercises 5 to 14 and then 15 to18 in 
the CSISS Workbook, which cover a variety of analysis, visualization and 
housekeeping functions. (OpenGeoDa™ is slightly different from the version to 
which the Workbook makes reference, but the differences are nothing to worry 
about.
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5.8 Exercise (26):  Using OpenGeoDa™ to compute a spatial 
weights matrix

Aims and introduction

As we saw in Section 2.4, the concept of adjacency can be summarized in a 
spatial weights matrix, W. The definition and assembly of such a matrix is a 
critical step in the computation of all the standard global autocorrelation 
statistics. OpenGeoDa™ offers two approaches to creating a W for a given 
system of areas, based on either contiguity or distance. 

Contiguity based measures record whether or not zones share a common 
boundary, recognizing two cases. One, called the Rook’s case is where the areas 
share any boundary. The second, or Queen’s case, extends the definition to 
allow areas that share a single corner also to be counted as adjacent. 

This type of W matrix can also be used to record connection in networks and, 
more generally still, links in any network of relationships. Given an initial matrix 
of first order adjacencies, simple powering can generate the 2nd, 3rd, etc., order 
adjacencies if these are required. In the spatial case discussed here, necessary 
conditions are that there are no ‘islands’ in the system that have no common 
boundary with any other area, that the areas do not overlap, and that they 
exhaust the plane, with no ‘holes’. These later conditions define what in GIS 
terminology is called planar enforced area ‘geography’ 

Distance based measures ‘collapse’ the area data onto a single reference point 
and then ‘slice’ the distances between all these points at some defined threshold 
to define adjacency using a simple binary scheme (1 = adjacent, 0= otherwise) 
to populate a W matrix as before. Alternatively, the inverse of these same 
distances defines a ratio-scaled measure of adjacency which, when row-
standardized such that all rows sum to unity, can also be used. It should be clear 
that this distance approach can accommodate ‘islands’ and again, by choosing 
increasing distances can create a correlogram that describes the autocorrelation 
structure over a range of distances. The disadvantage of the approach is the 
arbitrary nature of the reference points selected. For example, our North Carolina 
data uses the locations of the individual county seats as its point reference, 
which may, or may not, be sensible.

Geometry, space and level
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Area objects create a space that can perhaps best be called a ‘lattice’ in which 
adjacency is the ‘distance’. This exercise emphasizes the concept of 
complex/second order concept of adjacency.

Intended learning outcomes

After completing this exercise students will understand that:

• A spatial weights matrix W is a description of a ‘geography’ of interest 
based on either adjacency of areas in a planar enforced patter, or on 
distance from some arbitrary reference pint within each area;

• Such matrices represent in effect hypotheses about what is important in 
the ‘geography of interest and can/should be formulated with this in mind;

• All indices of spatial pattern (autocorrelation) rely on having such a 
formulation;

• Technically, W matrices are ‘sparse’, containing a lot of zeros and are 
often represented using a specific structure that omits the zeros.

Suggested student briefing

1. In OpenGeoDa™ open a new project using the SIDS2 shapefile, and 
access the weights creation routines using TOOLS>WEIGHTS>CREATE

2. In the dialogue boxes that follows, set the input file = SIDS2.shp (best to 
use the browse icon to find the full path for this). I find it useful also to 
set the Weights ID variable as the FIPSNO, which is the US Census 
Bureau’s own identifier for the county. 

3. Having done this set QUEENS CASE CONTIGUITY and click on CREATE. 
You will be prompted for a name for the file that records the W matrix for 
these data. Call it NC_queen. This file has a .gal extension, but is 
otherwise a text file that can be examined using any text editor such as 
Microsoft NotePad™ 

4. At this point examine the file and work out how it codes the ‘geography’ 
of the counties of NC.

5. In OpenGeoDa™ you can also examine properties of the chosen W using 
TOOLS>WEIGHTS>PROPERTIES to display a histogram of the ‘contact 
numbers’, that is the numbers of adjacent areas. Ideally, the histogram 
should be uni-modal and, of course contain no areas with a zero contact 
number indicative of its being either an island or an error. If the area was 
tessellated randomly, it can be shown that the mean number of adjacent 
areas will be six.
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Comment/answers

In (4) above Nc-queen.gal is coded:

100
1 3
19 18 2
2 3
18 3 1

etc.

This says that we have 100 records (line 1), each made up of a zone sequence 
number 1, 2, …, 100 followed by its contact number (3), followed by the 
sequence numbers of the three ‘adjacent’ zones. This is a standard way of 
coding a large sparse matrix in which the majority of the entries are zero (for no 
adjacency). 

In (5) a histogram of the contact numbers looks like Figure 5.12.

Figure 5.12 Contact numbers for the 100 counties of North Carolina

In a random tessellation of the plane the expected number of zone neighbors is 
6 (hexagons), but in this case we get a modal class of 5, which I think is 
probably something to do with the way the US was surveyed and settled. By and 
large much of the US was laid out by the surveyors ahead of the people and so 
has greater regularity in its county boundaries. In UK where the boundaries 
came after the settlement our small area statistics give number around 6!

Suggestions for modification
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This exercise is needed to introduce the idea of spatial autocorrelation, but 
instructors may actually find it better to introduce a standard measures, such as 
the Joins Count and Moran’s I dealt with in Exercises (27) and (28) first, and 
then refine student understanding using it.
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5.9 Exercise (27): Spatial autocorrelation and pattern 

Aims and introduction

There are several ways by which the idea of global spatial autocorrelation as a 
measure of ‘pattern’ in attributes attached to area objects can be introduced. 
Many instructors will prefer to go directly to the Moran’s I statistic and hence 
approach the subject by way of correlation using interval or ratio scaled 
variables. An alternative is to approach the same idea by way of the runs test for 
autocorrelation in a one-dimensional series. This approach and sections of the 
text that follow is taken by O’Sullivan and Unwin (First Edition 2002, pages 180-
196) but is in turn based heavily on ideas presented by Silk (1979). 

Geometry, space and level

This exercise uses the concept of adjacency in a lattice space very directly to 
generate measures that relate to the complex/second order concept of clustering 
of like values. Following the exercise in full allows for exploration of the analytical 
concept of a spatial process as it applies to area objects.

Intended learning outcomes

After doing these two linked exercises students will understand:

• The idea of a random process as selection from an underlying probability 
distribution;

• That any observed pattern is a realization of that  process;
• Some summary measure, such as the number of runs in a sequence or 

the nature of adjacencies in a B/W coded ‘map’ can be used to develop a 
test statistic;

• Under appropriate assumptions the test statistic itself has a sampling 
distribution (in this case normal), such that the probability of any 
observed realization can be assessed by using a z-score referenced to 
standard tables.

Along the way they will also learn how to conduct two standard tests:

• A runs test for a one-dimensional sequence of a binary (0/1) variable;
• The equivalent in two dimensions, which is the classic joins count test as 

developed by Cliff and Ord (1973).

Resources needed
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Pencil and paper, calculators and standard statistical tables of percentage point 
of the normal distribution. Deck or decks of cards. A standard coin with heads 
and tails.

Suggested student briefing

Part 1 The  Runs Test

1. If you took half a deck of cards, say the red diamonds (♦) and the black 
clubs (♣), shuffled it thoroughly and then drew the cards in order, what 
would the sequence of diamonds and clubs look like? Something like: 

♣♦♣♣♦♣♦♣♦♦♦♣♦♣♣♣♦♣♦♦♦♦♣♦♣♣

Is this sequence random?  That is, could it have been generated by a 
random process?  If the sequence was

♣♣♣♣♣♣♣♣♣♣♣♣♣♦♦♦♦♦♦♦♦♦♦♦♦♦

or 
♦♦♦♦♦♦♦♦♦♦♦♦♦♣♣♣♣♣♣♣♣♣♣♣♣♣

would you consider these likely outcomes of a random process?  These 
both look highly unlikely, and in much the same way.  Again, does the 
sequence

♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦

seem a likely outcome of a random process?  

The second, third and fourth all seem very unlikely, but for different 
reasons, yet all four sequences contain 13 of each suit, so it is impossible 
to tell them apart using simple distributional statistics.  What you need to 
focus on is how each card drawn relates to the one before and the one 
after—to its neighbours in the sequence, in effect. Note that each of these 
sequences might have been generated by the same process and that we 
call each a realization of that process. The element of chance means that 
we have a lot of possible realizations and it is the process that involves 
randomness not the outcomes;

2. One way to quantify how unlikely these sequences are is by counting runs 
of either outcome (i.e. unbroken sequences of only clubs or only 
diamonds).  For the examples above we have 
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♣♦♣♣♦♣♦♣♦♦♦♣♦♣♣♣♦♣♦♦♦♦♣♦♣♣

♣♣♣♣♣♣♣♣♣♣♣♣♣♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♣♣♣♣♣♣♣♣♣♣♣♣♣

♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦

making 17, 2, 2 and 26 runs respectively.  Intuitively, you should be able 
to see that either very low or very high numbers of runs suggest that the 
sequence is not random.  So, now conduct an experiment for yourself, 
with or without others in the class;

3. Take the diamonds and clubs from a deck of cards, shuffle them 
thoroughly and then draw them one at a time and record the sequence 
(occurrences) of diamonds and clubs obtained. This is clearly an example 
of a single realization of a random process that has two possible 
outcomes; 

4. Either repeat this several times, or do this as an in-class experiment in 
which you share your results, and produce a histogram of the results. This 
is an experimental/empirical estimate of the sampling distribution of the 
number of runs. Compute the mean and standard deviation of these 
realizations;

5. The theoretically expected values are easily computed from the numbers 
of each used (n1 and n2) as
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Use these results for the means and standard deviation to find z-scores, 
and use standard tables of the percentage points of the normal 
distribution (or a website such as that at 
http://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html.

 For example the first realization above gives us:

202.1
4980.2

1417 =−=z
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6. How unusual is your result? This approach is a standard statistical test for 
‘randomness’ in s sequence of binary (0/1, R/B etc) numbers called the 
Runs Test.

Part 2 Joins counts (on a grid)

1. Draw a 6 by 6 chess board and then ‘color’ each cell ‘black’ or ‘white’ 
using the same random mechanism that was used in Part 1; 

2. However, in this application we will toss a coin 36 times, once for each 
grid call and record the result ‘black’ if it’s heads and ‘white’ if it’s tails’. 
The result will be a crude map showing a grid of 36 cells, each coloured 
either black or red;  

3. Now, using the Rook’s case definition of adjacency (i.e. just adjacencies 
along rows and down columns, not the diagonal ones) count the numbers 
of joins of each type, calling the results JBB, JWW and JBW. Trying to do this 
will convince you that it’s easier and less error prone to count on a cell by 
cell basis, counting all the joins to that cell and then halving the result. 
Check your results by noting that for this 6 by 6 grid, these numbers 
should sum to k= 60 (why?);

4. By now you should just about see the connection of the runs count test to 
spatial autocorrelation.  Our attribute in each cell is a binary variable (0/1, 
B/W) and instead of counting runs as our measure of pattern, we are 
using the joins in two spatial dimensions as the measure.  The analogous 
test for a spatial pattern is called the Joins count test for spatial  
autocorrelation, developed by Andrew Cliff and Keith Ord in their classic 
book Spatial Autocorrelation (Cliff and Ord, 1973);

5. As you might expect, the equations that give the theoretical results for the 
expected outcome of the joins count statistics for an independent random 
process. The expected mean values of each count are given by:
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where k is the total number of joins on the map, pB is the probability of an 
area being coded B, and pW is the probability of an area being coded W. 
Note that at each colouring we could have either outcome, which means 
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that the numbers of black and white cells don’t have to be equal. Because 
of the mechanism used we know that the underlying probabilities  pB = pw 

= 0.5. This is called free sampling. Typically in a real map this isn’t the 
case and we are forced to use the observed numbers of black and white 
cells to estimate the underlying probabilities. This is called non-free 
sampling and it gives rather more complex equations for the standard 
deviations (see below). The expected standard deviations are given by the 
more complicated formulae: 
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where k, pB and pW are as before, and m is given by 
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where ki is the number of joins (or neighbors) to the i-th area. Computing 
m is just tedious (you should get m = 148, but don’t take this on trust).

Comment/answers

These exercises are deceptively simple, but they introduce some very 
fundamental ideas that can and should form the basis for discussion.

Part 1: Runs test

Typically, students will count between 11 and 17 runs, and the extremes are 
obviously either 2 or 26. This exercise illustrates in a simple and intuitive way 
some important concepts and it should not be completed without summarizing 
them. These concepts are a realization of a random process, the development of 
a simple test statistic, the sampling distribution of this if the null hypothesis is 
correct, and the use of z-scores to assign a probability based on the assumption 
of normality. 
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♣♦♣♣♦♣♦♣♦♦♦♣♦♣♣♣♦♣♦♦♦♦♣♦♣♣  (17 runs)

♣♣♣♣♣♣♣♣♣♣♣♣♣♦♦♦♦♦♦♦♦♦♦♦♦♦ (2 runs)

♦♦♦♦♦♦♦♦♦♦♦♦♦♣♣♣♣♣♣♣♣♣♣♣♣♣  (2 runs)

♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦♣♦  (26 runs)

In the cases above with 13 ♣’s (n1=13) and 13 ♦’s (n2=13), we have:
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So for the first example we have a z-score of:

202.1
4980.2

1417 =−=z

This is unusual, but not massively so. For the other, extreme examples the z-
score is -4.8038.

In class make sure that students understand the notions of each sequence being 
a realization of a process involving random selection from an underlying (in this 
case binomial) probability distribution. You can of course also change the original 
numbers of cards of each colour to use distributions other than p = q = 0.5.

In class I have usually compiled a histogram of the numbers of runs obtained on 
the board/OHP to show how as n increases so we start get something that can 
look vaguely normal centered on the expected theoretical value. Almost always 
you get some extreme values, which is pedagogically useful. I have less joy with 
the observed standard deviation in relation to its expected value, but students 
will easily see that the same process yields a number of outcomes...

Part 2: Chess Board
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Again typically, students will usually get low z-scores, but as an in-class 
experiment with a reasonable number of students it is by no means unusual to 
get some extreme values. Since students know that the process used was 
‘random’ this fact can be used to introduce critical ideas in classical statistical 
inference. If you ran Part A, a very useful thing to do is to show that the same 
key concepts apply here. 

A sample result is given in Figure 5.13.

Figure 5.13 A realization of a random process and its Joins Counts
(Source: after O’Sullivan and Unwin (2003) Figure 7.5 b)

Since we used free sampling by flipping a coin the appropriate probabilities for 
black and white are pB = pW = 0.5 and with the ‘Rook’s Case’ neighbors, the 
number of joins in the grid is k = 60.  Finding m is simply tedious, but it comes 
to 148 as:  
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Expected values for the means under the null hypothesis of random colouring 
are:
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This leads to a z-score for BB joins of -1.650, for WW of 0.733 and for BW of 
1.291 none of which exceeds the 95% threshold. 

Suggestions for modification

In the context of spatial autocorrelation, it is useful to repeat the experiment 
using a deck of cards (as in the runs test) to illustrate the idea of non-free 
sampling. Joins count statistics can be very awkward and a number of issues will 
arise:

a) A large negative z-score on JBW indicates positive autocorrelation since it 
indicates that there are fewer BW joins than expected.  The converse is 
true;

b) It is possible for the three tests to appear to contradict one another, in 
which case there is an interesting problem in logic. By simulation Cliff and 
Ord (19763) suggest that the BW test is the most reliable;

c) Generally the choice of neighborhoods should not affect the scores and 
the decision about the overall structure, but this is not always the case;

d) In this example, the assumption is that pB and pW are known in advance. 
Normally they are estimated from the data, and, properly speaking, much 
more complex expressions should be used for the expected join counts 
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and their standard deviations.  These are given in Cliff and Ord (1973). 
The difference is equivalent to that between the card drawing and coin 
flipping examples described in the discussion of simple Runs Test;

e) Finally, to make the calculations relatively simple, the exercise used a 
regular grid. For some US presidential election data treated at the State 
level over an irregular tessellation of areas see O’Sullivan and Unwin (First 
Edition, 2002, pages 192-196). Attempting to assemble the W-matrix of 
adjacencies used in this example by hand will quickly convince students of 
the usefulness of some automated approach as in Exercise (26), Section 
5.8.

139



5.10 Exercise (28): Global spatial autocorrelation using 
OpenGeoDa™

Aims and introduction

Working through any realistic calculation of spatial autocorrelation using the 
Joins Count approach as in Exercise (27) quickly reveals two difficulties. The first 
is that use of binary data is very restrictive and throws away potentially 
important information. The second is the sheer labour involved and the chances 
of error. In practice, most workers in the field now use an approach using 
Moran’s I statistic and just about everyone will use appropriate software to do 
the calculations. This exercise returns to the SIDS data for North Carolina and 
functionality provided in OpenGeoDa™ to compute a different measure of spatial 
autocorrelation, Moran’s I. It is assumed that Exercises (25) and (26) have been 
completed along the way.

Geometry, space and level

As Exercise (27).

Intended learning outcomes

After completing this exercise students will be able to:

• Outline the construction of Moran’s I index of spatial autocorrelation and 
explain why this is a measure of ‘pattern’ in area object attribute data;

• Use OpenGeoDa™ to do the necessary calculations.

Resources needed

Computer running OpenGeoda™ with the SIDS data available.

Suggested student briefing

At the end of Exercise (25), you had a map of the rates of incidence of SIDS in 
the 100 counties of North Carolina, relative to the total number of births. Does 
this map show a ‘pattern’ that is different from that which we might have got 
had the 100 values for the rate of incidence of SIDS been allocated randomly to 
the 100 counties? To answer this question requires a test for global spatial 
autocorrelation of the type discussed in Exercise (27), Section 5.9. In that 
exercise we used a test, called the Joins Count, adapted for two spatial 
dimensions from the standard Runs Test of randomness in a one-dimensional 
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series and using an attributed that was coded as a binary variables (black/white, 
on/off etc). Even with just a few zones the labour in making the counts and 
performing the test was high, with a strong possibility of making some simple 
arithmetic error. This exercise introduces a different approach to detecting and 
measuring spatial autocorrelation based on an analogy with the standard 
correlation coefficient and applicable to interval and ratio scaled variables, such 
as the set of rate value that we have for the counties of North Carolina. 

Moran's I spatial autocorrelation statistic is usually applied to areal units where 
numerical ratio or interval data are available, and is defined by a pretty terrifying 
equation as: 
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The important part of the calculation is the second fraction, .in which the 
numerator (top bit) is:
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which is actually a covariance.  The subscripts i and j refer to different areal units 
or zones in the study, and y is the data value in each.  By calculating the product 
of two zones’ differences from the overall mean ( y ), we are determining the 
extent to which they vary together (co-very).  If both yi and yj lie on the same 
side of the mean (above or below) then this product is positive; if one is above 
the mean and the other below, then the product is negative and the absolute 
size of the resulting total will depend on how close to the overall mean the zone 
values are.  

These covariances are then multiplied by wij,. This is an element from a spatial 
weights matrix W of the sort that we looked at in Exercise (26), Section 5.8. You 
will recall that each element in the matrix says whether or not we regard the 
zones represented by its position in the matrix are ‘adjacent’ or not. Its role here 
is to switch on/off the calculation. If the element wij is set equal to 1, the rest of 
the calculation is performed for the values in the zones i and j. and this will only 
happen if these two zones are considered adjacent. If it is set at 0, then the 
calculation results also in a zero. After summing for all possible pairs of zones the 
result will be a measure of the covariance shown by all the zones relative to their 
neighbours. 
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The rest of the formula standardizes the value of I for the number of zones being 
considered, the number of adjacencies involved, and the range of data values. 
Dividing by the sum of the entries in the W matrix ΣΣwij accounts for the number 
of joins in the map.  Multiplying by 
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2

is actually division by the overall dataset variance, and corrects the value of I for 
the overall variance and so ensures that I is not large simply because the values 
and variability in y are high.

1. You are now ready to use OpenGeoDa™ to do the hard work for you. 
First close any session you have running and access the SIDS2 data

FILE>CLOSE ALL
FILE>OPEN SHAPEFILE as SIDS2

These rate of SIDS as a proportion relative to the total non-white births 
data at the County level and aggregated over the five years from 1974-
78 (note that I am being very specific here) are pre-computed for you as 
NWR74 in the SIDS2 data set, so we have our values for y. It might be 
useful at this point to re-draw the map and remind yourself about the 
basic geography of these rates:

MAP>QUANTILE and select NWR74 (remember these are the rate of 
sudden infant deaths relative to the non-white births in these counties).  

Your map should show what appears to be a clear spatial concentration 
of counties with high rates; 

2. Next, you need a spatial weights matrix, W, to be assembled for the 
North Carolina Counties. Access the weights creation routines using 
TOOLS>WEIGHTS>CREATE and in the dialogue boxes that follows, set 
the input file = SIDS2.shp (best to use the browse icon to find the full 
path for this). I find it useful also to set the Weights ID variable as the 
FIPSNO, which is the US Census Bureau’s own identifier for the county. 
Having done this set QUEENS CASE CONTIGUITY and click on CREATE. 
You will be prompted for a name for the file that records the W matrix 
for these data. Call it NC_queen. This file has a .gal extension, but is 
otherwise a text file that can be examined using any text editor such as 
Microsoft NotePad™. You now have the necessary elements to complete 
the calculation of Moran’s I;
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3. To compute Moran’s I, proceed as SPACE>UNIVARIATE MORAN and 
select NWR74 from the dialogue box and in the ‘select weight’ dialogue 
navigate to and select NC_Queen as the weights matrix W; 

4. The result is a display with two elements, a slightly mysterious (x, y) plot 
and, at the top in blue lettering, a computed Moran’s I. You should get a 
value of I=0.7226. Ignore the plot and concentrate on this value. If this 
was a normal correlation coefficient, its value must be in the range from 
-1 to +1 and we’d think that 0.7226 is pretty high. As with a standard 
correlation coefficient, values above zero indicate positive spatial 
autocorrelation and values below it show chess-board like negative 
spatial autocorrelation.  We might also use a standard t-test to discover 
whether or not this value exceeds some specified threshold at a specified 
p-level;  

5. Unfortunately it isn’t this simple with spatial autocorrelation. We suspect 
that we have evidence of a high autocorrelation, but is it significantly 
different from what we expect if the rates were randomly distributed? 
There are two complications. First, the expected ‘null’ value isn’t zero, 
but for a reasonably ‘well behaved’ lattice of areas depends on the 
number of areas in the lattice as:
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Note that for even quite moderate n this will be close to zero. Second, 
the variance of I is a complicated function of the W used and the 
assumptions one makes about the way the area values were generated. 
For a good account of the arcanums of all this, see Fotheringham, 
Brunsdon, and Charlton (2000, pages 201-209). Fortunately, there is an 
easier and in some respects more realistic option which is to ignore the 
theory and rely on a random permutations test. With n areas we have n! 
possible permutations of the values between the areas and, of course, 
we have observed and mapped just one of these. It is usually impractical 
to compute I-values for all possible permutations, so instead we use a 
Monte-Carlo sampling to select a reasonable number from them as the 
basis for our null values. In OpenGeoDa™ do this by selecting 
OPTIONS>RANDOMIZATION. This gives a menu of possible sample 
numbers. Clearly, the more the better, but at some cost in computation 
time. In this case, experiment will show that the result is so clear cut 
that 99 runs is adequate. Your value for the mean is likely to be around 
the theoretical expectation of -0.010101 and have a standard deviation 
around 0.06. At 0.7226 the observed value is thus around 11 standard 
deviations 11 standard deviations away from the mean, so you can be 
pretty confident that the pattern of rates is significantly different from 
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being spatially random. In other words there is a spatial pattern to these 
data: they are not random.;

6. Repeat the analysis using the ‘1979’ aggregated rate data, listing and 
comment on the results. Is the pattern the same? 

Comment/answers

NWR74 looks like Figure 5.14:

Figure 5.14

With the result for Moran’s I as in Figure 5.15

Figure 5.15 Moran’s I

The experimental null value will be around -0.010101 with a standard deviation 
so small that we can be pretty sure that the pattern is different from random. 
There is a pattern that shows positive spatial autocorrelation in which area with 
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like values tend to be closer together. This is an illustration of what has 
sometimes been called Tobler’s law, sometimes called the ‘First Law of 
Geography’. Like most ‘first laws’ in science it is in some sense definitional: if 
spatial autocorrelation did not exist there would be little point in studying any 
geography. In its original form the law was stated: “everything is related to 
everything else, but near things are more related than distant things” (Tobler 
1970). Pedagogically, it is vital that students are shown how this concept is 
reflected in the way Moran’s I is defined and calculated. That the pattern of SID 
over these five years shows a ‘geography’ is only the first step; explaining it is a 
different matter and would need some work with possible covariates, taking care 
to avoid autocorrelation issues.

The 1979 rate data (NWR79) will look something like Figure 5.16.

Figure 5.16 Map of the 1979 data rates

145



Figure 5.17 Moran’s I for the 1979 data

Finally, Figure 5.17 shoes the results for Moran’s I.

Suggestions for modification

The most obvious extension is to use this exercise to introduce the idea of a 
local statistic and illustrate this with the Moran Scatter Plot, a Local Indicator of 
Spatial Association produced by OpenGeoDa™ (see Anselin, 1995, 1996). 
Interpretation of these scatter plots isn’t always obvious, needing a good 
appreciation of the actual geography of the studied area in order fully to 
understand them. Since this is exactly why the plot was produced in the first 
place there is an evident circularity in the process! Your 
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Chapter 6 Fields

6.1 Introduction

This chapter provides a series of exercises associated with self-defining 
continuous fields where the entity is an attribute that is continuous across space 
and thus is in some sense self-defining. The relations are those involving 
distance and magnitude and there are a number of associated spatial concepts 
such as the first order primitive we call height, and second order notions of 
continuity’, gradient and trend’  
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6.2 Exercise (29): Continuity and isolining a field

Aims and introduction

Many students assume that it is easy to create a continuous isoline map of a field 
from a scatter of point attribute values. This exercise, adapted from O’Sullivan 
and Unwin (2010, pages 251-253) will show them otherwise. The key concepts 
that it illustrates are those of continuity, single value and the presence of spatial 
autocorrelation in the field variable. It is also a useful introduction to automated 
contouring.

Geometry, space and level

At this level fields are self-defining and create a metric, usually Euclidean space. 
The primitive/first order concept is that of ‘height’. This exercise explores the 
consequence of complex/second order concept of continuity in a very direct and 
obvious way.

Intended learning outcomes

After completing this exercise students will realize that:

• Threading lines of equal value through a sample of control points is not a 
trivial problem and that different people will produce different maps;

• Almost always, the objective truth does not exist, but some interpretations 
(models?) will be better than others;

• Spatial interpolation relies on the assumptions of continuity and single-
value as well as on the fact that the variable is spatially autocorrelated;

• In drawing isolines additional information and prior knowledge often play 
a large part in determining the result.

Along the way, the might also have learnt how to

• Draw isolines from a scatter of data control points.

Resources needed

Base maps as below, pencil, paper, erasers.

Suggested student briefing

1. The point attributes shown in Figure 6.1 are ‘spot heights’ of the average 
January temperature (oF) in a part of Alberta, Canada
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Figure 6.1 Average January Temperatures (o F) over a part of Alberta
(Source: O’Sullivan and Unwin (2010), Figure 9.4)

2. Self-evidently, temperature is a continuous phenomenon. Everywhere has 
a value, so what we have here is a sample drawn from a continuous field 
of values. We can reconstruct the entire field  by means of the process 
known as spatial interpolation in which we thread lines of equal value 
(generally these are called isolines, in this case they are iso-therms) 
through the numbers;

3. Using a pencil (you may also need an eraser!) and produce a continuous 
surface representation of these data, by drawing isolines of equal 
temperature This task is NOT as ‘easy’ or ‘trivial’ as it might at first 
appear. In locating the lines of equal value you need to bear in mind three 
things. First, don’t ‘join the dots’.  The data are unlikely to be exact and 
each isotherm is likely to have substantial spatial width. Second, the best 
way to work is to select a value in the middle of the data range and locate 
and draw this first. For this map a mean of 0oF isn’t a bad starting point 
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(This part of the world is very cold in January). Having located this 
isotherm you can now work upwards and downwards away from it as 
some suitable interval. Third, perhaps a little more arguably, perhaps you 
should also try to make the resulting surface of average temperatures as 
smooth as you can, consistent with it honouring all the data.  What this 
means is that the interpolated surface should pass through all the 
measured data exactly.  In practice, this means that there should be no 
inconsistencies where measured temperatures lie on the 'wrong' side of 
relevant isotherms;

4. Now reflect on how what you have done relies entirely on three very 
fundamental assumptions. First, you assume continuity, that everywhere 
has a value and there are no very sudden, abrupt leaps or falls in these 
values. Second, you have also invoked Tobler’s law that ‘everything is 
related to everything else, but near things are more related than distant 
things’ (Tobler 1970). This is in effect an assumption that the variable 
being mapped is autocorrelated over a distance greater than the spacing 
of the data points. Third you have assumed that the resulting field is 
single-valued, that is there is just one value for the variable at each and 
every point in the area. Think about all three assumptions. Under what 
circumstances might they not hold?

5. Having drawn you map consider the following problems:

a) Self-evidently, different people will draw different maps depending on how 
they interpret the field and some will be ‘better’ than others, so how might 
you assess the quality of any one interpretation?

b) Deliberately, the map of the sample points gives nothing else away. What 
additional information might have helped you locate the isotherms?

c) Finally, to what extent might any prior knowledge of the problem have 
helped in the process?

Comment/answers

I confidently predict that a fair proportion of any class will make a complete 
mess of this exercise. Some simply don’t 'get it', producing invalid surfaces that 
couldn't exist in reality (e.g. lacking continuity with contours crossing a lot, even 
bifurcating).  

I like to think that hand drawn my effort isn’t bad:
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There is an interesting problem in these data. As a test of comprehension, 
students might be encouraged to think about the circumstance in which you 
could have an apparent cross in a contour pattern -- there is one possibility that 
might be seen here. Look at the isotherm for 5 degrees and the point that has 
the same value center left of the area. This could be a ‘col’ on the surface where 
the contours would touch and thus look as if they ‘crossed’. To avoid this I have 
not extended them to touch at the data point but perhaps I should have? Many 
people put in a ‘ring contour’ hereabouts.

Assumptions of continuity don’t hold for if we are dealing with depths of a 
faulted geological stratum and if there is an overfold nor will the single value 
assumption hold. Some things we might measure can vary at scales below that 
of the sampling interval and so should not be isolined.

Discussion might start with the proposition that for these data, the ‘truth’ simply 
does not exist. We can't go back to Alta and set up past weather stations even if 
we wanted to -- and this is very common in most science. An isoline pattern is 
usually a ‘model’ for some data, and in isolining by hand we impose our 
individual models on these data. The question is then what criteria can we have 
for quality in such an isoline pattern? A list of possibilities is:

a) The field must be continuous;
b) The field must honour all the data;
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c) Arguably, it should also be as smooth as possible consistent with the 
above;

d) It should make maximum use of the available information given by he 
data about he spatial structure and the resulting isolines should be 
consistent with this;

e) An ‘objective’ test is to separate the data into two sets and contour just 
one of them, looking at how well the result honors the data points that 
were left un-used;

f) Although it is subjective, ‘plausibility’ seems to me to be a sensible 
criterion!

It follows that almost any additional data will help in the process, in the present 
case the main co-variate could well be station height, but there are others. I 
have repeated this and similar exercises with student classes many times and it 
is clear to me that preconceptions of the way we think the particular variable 
should be behave spatially, or prior knowledge, is often what we use in drawing 
the isolines. A classic experiment by Dahlberg many years ago (Dahlberg, 1975) 
pitted experienced geologists against a computer interpolation routine using the 
same test data. The result was that all the maps produced were similar close to 
the data points, but differed, often wildly, in the uncontrolled areas where pre-
conception played a bigger role. Very rarely in the real world are we required to 
isoline fields about which we have no prior knowledge.

Suggestions for modification

You could of course ask students to find their own sample data, or develop a 
different case. Davis (2002), pages 370-397 is as comprehensive an account of 
issues in contouring as you are likely to se and the linked website has at least 
one suitable if large (n=360) data set (LEDUC.TXT, see 
http://www.kgs.ku.edu/Mathgeo/Books/Stat/index.html)

It is also useful to introduce a little formalism into things by reefing to the 
concept of a scalar field in which the field height is some function of location and 
can be described by the very general equation:

),()( iiii yxffz == s

In which si is any location with locational co-ordinates (xi , yi ) and which we 
express the ideas of continuity and single value. It is a small step from this to 
suggest that many of the ways we have of modeling and representing field data 
are different ways of expressing the same function.

154

http://www.kgs.ku.edu/Mathgeo/Books/Stat/index.html


As an aside, running this little experiment will almost certainly enable you to 
suggest that the consistency of method provided by a computer algorithm to 
interpolate is a powerful reason for automation.
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6.3 Exercise (30): Isolining by machine

Aims and introduction

This exercise adds no new concepts, but after doing Exercise (29) it would be a 
pity to miss it out and I would never use it without first trying to isoline by hand.

Over the years I have looked in vain for an easy-to-use freeware program that 
offers random to grid interpolation by a variety of methods together with some 
decent visualization capabilities. If what you want is visualization of some ready 
gridded data, then Jo Wood’s Landserf (see 
http://www.soi.city.ac.uk/~jwo/landserf/ ) is state of the art, but it does not 
offer any serious interpolation algorithms. If you have ArcGIS™, or are familiar 
with ‘geoR’, then well and good, you will be able to do this exercise using those 
systems. 3DField is a useful resource that is provided as limited freeware system 
and a more powerful package that costs very little.

Geometry, space and level

As Exercise (29).

Intended learning outcomes

After completing this exercise students will:

• Be able to run a simple computer-based interpolation routine;
• Understand that such routines have the advantage of consistency, but can 

produce poor results if used uncritically;
• Understand that a variety if visualization methods can be adopted.

Resources needed

Machine with the freeware version of 3DField running and with a data file 
containing the temperature data from Alberta used in Exercise (29) as:

1 1.8 0.8 11.5
2 5.7 7.1 12.6
3 1.2 45.3 2.4
4 8.4 57.1 -6.6
5 10.2 46.7 -7.9
6 11.4 40 1
7 15.9 35.4 2.5
8 10 30.9 7.1
9 15.7 10 8.4
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10 21.1 17.5 5
11 24.5 26.4 10
12 28.5 33.6 3.1
13 33.5 36.5 1.7
14 36.4 42.9 0.4
15 35 4.7 7.4
16 40.6 1.6 7.2
17 39.9 10 6.6
18 41.2 25.7 1.5
19 53.2 4.4 2.9
20 55.3 8.3 2.9
21 60 15.6 -0.9
22 59.1 23.2 0
23 51.8 26.8 1.4
24 54.7 54 -6.3

Column 1 is an identifier, 2 contains the X co-ordinates, 3 the Y’s and 4 the Z’s. 
These data are in the text file Alta_temperatures.txt

Suggested student briefing

1. If it has not already been done for you, go to http://field.hypermart.net 
and download and install a copy of the free version of 3DField 3.1.0. You 
will see that the ‘unregistered’ version limits you to <= 50 sample points 
and has reduced set of functions with no 3D views;

2. The (x, y, z) data for our January temperatures over Alberta are in the file 
Alta_temperatures.txt;

3. Our aim is to create isotherm maps of these data using a selection of the 
standard algorithms. 3DField’s interface takes a bit of getting used to but 
once up and running turns out to be fairly easy to use;

4. First, examine the Alta_temperatures.txt data using Microsoft Notepad™ 
to see how they are organized. The column order is Number, X co-
ordinate, Y co=ordinate and then the temperature, Z;

5. Start 3DField. First, you will need to ensure that the system understands 
how these data are formatted. Use EDIT>FORMAT SCATTERED DATA to 
set column 1 as the Label, column 2 as the X, columns 3 as Y and 
column 4 as Z;

6. Now incorporate the temperature data into the system using MAP>OPEN 
DATA FILE and navigate to where you have stored these data. Your 
reward should be a map of these sample data points. Should you wish it, 
you can improve the look of these using EDIT>POINT>MARKER and using 
a bolder font; 
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7. Like most interpolation systems 3DField takes a two-stage approach. First, 
it uses one of a number of algorithms to take the data from a semi-
random scatter to a very fine grid of estimated values. Second, it offers a 
variety of visualization options to map this grid. The density of the grid 
can be varied using options in GRID, but the business part of the system 
is either in the text window or hidden in OBJECTS>GRIDDING METHOD. 
In this first analysis go via OBJECTS>GRIDDING METHODS and step up to 
INVERSE DISTANCE METHOD, then chose OPTIONS and check that the 
distance exponent (POWER) is equal to the default value of 2.0. OK this 
and then SELECT the method. 3DField calculates a fine grid of estimates 
using this as its interpolator;

8. Visualize this grid using MAP LIST>SIMPLE CONTOURS and customize 
these to be the same as those you used in your hand drawn effort in 
Exercise (29). The result is likely to be a shock and perhaps even a blow 
to your self-esteem. 3DField has numerous options that let you change 
the cartography and you’ll probably want to experiment with them, add 
text and so on, until you get something that of which you might be proud;

9. Having familiarized yourself with at least some of what the system can do, 
experiment with different interpolators (the choice is very, very wide!), 
recording your results as you go along. As each map is created you can 
save it in a selected standard format using FILE>SAVE IMAGE. 

Comment/answers

A 3DField generated map using the inverse distance weighting (IDW) algorithm 
with a distance exponent of 2.0 gives the interpretation shown in Figure 6.2.
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Figure 6.2 The Alta data isolined using IDW with an exponent of 2.0

I note that this isn’t all that dissimilar from my hand-drawn effort, but students 
using the system will undoubtedly find that the computer-produced results are 
almost always better than their own efforts. Many years ago I did a simple study 
in which I matched student hand drawn maps of these same data to inverse 
distance weighted machine examples, discovering that choice of a distance 
exponent of 2.0 is a pretty good average for a human interpolator. Those with a 
very, very long memory will recall that the venerable and venerated SYMAP 
program of the mid-1960s used an exponent with the same value in its version 
of inverse distance weighting.

Once you have the data in a system that offers numerous methods of 
interpolation, each with numerous possible settings, the temptation is to 
generate lots and lots of maps. What of course you discover is that you can get 
plausible results from many (but emphatically NOT all) of these and yet we have 
no clear metrics for deciding which is ‘best’.  

Suggestions for modification
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If your interest is in automated contouring or visualization, the obvious 
extension is to develop an exercise in which students use 3DField to 
experiment with a variety of interpolators and visualization methods. 
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6.4 Exercise (31): Visualizing fields

Aims and introduction

Contour-type maps with various enhancements to help visualization are 
often found on the WWW.   This exercise uses a search engine to find 
examples of maps that illustrate some of the ways used to represent field 
data cartographically. Examples include ‘spot heights’, contours, 
hypsometric tints, relief shading, and hachuring.

Geometry, space and level

As Exercises (29) and (30), but perhaps concentrating on complex concepts such 
as relief and gradient. A careful search will find examples of the concept of a 
vector field, but note also that many method of relief enhancement used by 
cartographers use some version of ‘hill shading’ that makes use of the same 
concept.

Intended learning outcomes

After completing this exercise students should be able to:

• Identify a range of methods used by cartographers to display fields;
• Critically evaluate these methods.

Resources needed

Internet browser and/or access to a good map library.

Suggested student briefing

1. Use Google Images™ or a similar search engine to find examples of 
contour type maps used (a) to represent earth surface relief and (b) to 
represent the field generated by some other spatially continuous variable 
such as temperature and mean annual rainfall. 

2. In each case, list the methods used to indicate both the height of the field 
and its shape. Don’t hurry this task: the list is almost certain to be longer 
than you might at first have thought;

3. In each case comment on the effectiveness of the method and its 
combination with other approaches.
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Comment/answers

A good, if dated, source is the various old Tourist Editions of the Ordnance 
Survey of Great Britain, based on their old one inch to the mile mapping. These 
sheets were used as test beds for sometimes very innovative cartography 
involving numerous methods for relief representation. My own favourite is the 
original early 1960s map produced for the Cairngorm mountains of Scotland that 
coupled spot heights, contours, hypsometric colouring and hill shading to 
produce one of the most beautiful maps of all time. 

Standard methods used include spot heights and bench marks, contours, 
layer colouring/hypsometric tinting, oblique hill hading and even 
hachuring. There is a dated review in Unwin (1981, pages 153-161) and 
virtually every cartography text ever written. Computers have greatly 
extended the range of available methods, such that what is clearly 
intended as a ‘map’ seems almost to merge with displays that could 
justifiably be cited as examples of virtual reality. For a discussion of some 
the issues that this ability raises, see Wood (2002).

Suggestions for modification

This exercise is useful as precursor to a discussion of how we get from 
raw height data, themselves a sample of the field, through some sort of 
model of the field, to the representation of that model in what essentially 
consists of three steps: sampling, describing by a continuous model and 
representing as a map (see O’Sullivan and Unwin 2010, 243-250). In turn 
this perhaps should lead to a critical assessment of the contour. It can 
also lead to discussion of the notion of the vector field given by the 
gradient of the field.
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6.5 Exercise (32): Trends in fields

Aims and introduction

A spatial concept that is often of interest is any regional trend in the height of a 
surface that can be explored using one of the collection of methods and 
approaches called trend surface analysis. GIS such as ArcGIS™ and IDRISI™ 
have this capability built in but it is a very simple matter to fit trend surfaces 
using any software that offers basic statistical analysis such as SPSS™ and 
MINITAB™. This exercise uses Microsoft Excel™ to do the required calculations 
for two simple problems.

Geometry, space and level

Again we are in a Euclidean metric space, but dealing with an analytical/third 
order concept, that of trend.

Intended learning outcomes

After completion of this exercise students will:

• Understand what is meant by the ‘trend’ of a surface;
• Be able to use Excel™ to model linear trends across a surface;
• Be able to assess the statistical significance of any fitted model;
• To produce simple maps of a fitted linear surface;
• Know how to extend this analysis to fit quadratic trends.

Resources needed

The data file (derived from the spot heights shown in the figure below and the 
data for January temperatures in a part of Alberta, Exercise (29) above held in 
Alta_temperatures.txt. Access to Microsoft Excel™ with the Analysis routines 
loaded.

Suggested student briefing

1. First, and very important, ensure that on your machine you have the Excel 
™ Analysis routines loaded. Do this by going to >TOOLS, >ADD INS, then 
tick ANALYSIS TOOLPAK and ensure that it loads;

2. To gain confidence, fire up the analysis-enabled Excel™ and load in the 
sample data given in Figure 6.2 and in Table 6.1

163



Figure 6.2 Some simple data for trend surface analysis 
(Source: after O’Sullivan and Unwin (2003), Figure 9.5)

Point x y Height 
z

1 36 13 5
2 73 5 10
3 40 39 15
4 32 48 20
5 64 16 25
6 63 25 30
7 21 69 35
8 76 38 40
9 53 89 45

10 98 66 50

 Table 6.1 Locational (x, y) and height (z) co-
ordinates for the data in the above figure

(Source: after O’Sullivan and Unwin (2003), Table 9.1)

3. In  TOOLS  select  DATA  ANALYSIS  and  then  use  the  slider  to  choose 
Regression. The simple way to compute a linear trend surface is use the 
mouse to select the height, or z values into the window labeled ‘Input Y-
range’  and then repeat this for the two columns containing the (x,  y) 
locational co-ordinate that are our ‘independent’ variables. Note also that 

164



you  can  switch  on  or  off  various  output  options.  Clicking  GO  should 
produce a linear model with the constants:

iii yxz 4519.03373.06949.9ˆ ++−=

In which ẑ  is the estimated height at location si with coordinates 
(xi , yi);

4. It is useful to draw out this surface.  Draw out a square map frame 
with x and y-axes ranging from 0 to 100 on each axis and then 
produce contours of this linear trend surface at z = 0, 15, 30 and 
45. It is easier to work ‘backwards’ using the above equation.  Set 
z at the required contour value and then in turn set each of x and y 
at zero, in each case finding either the appropriate x or y value 
where the contour crosses that axis. You should end with a simple, 
regular inclined plane rising from the origin in the ‘south west’ 
towards the ‘north east’ of the frame. The R2 is 0.851 indicating a 
very close fit between the trend surface and the observed data;

5. Whether or not this fit is statistically significant can be tested using 
an F-ratio statistic

( ) residuals
2

surface
2

df1
df

-R
RF =

where dfsurface is the degrees of freedom associated with the fitted surface, 
equal to the number of constants used, less one for the base term b0  and 
dfresiduals is the degrees of freedom associated with the residuals, found 
from the total degrees of freedom (n – 1), less those already assigned, 
that is, dfsurface.  In the example dfsurface = 3 - 1 = 2, and dfresiduals = 10 – 1 - 
2 = 7, so that

986.19
0213.0
4255.0

7149.0
2851.0

=

=

=F

This F -ratio indicates that the surface is statistically significant at the 99% 
confidence level and we can assert that the trend is a real effect and not 
due to chance sampling from a population surface with no trend of the 
specified linear form;

6. Can you suggest how we might modify this workflow to enable 
computation of a quadratic trend surface?
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7. Now return to the data for January temperatures in Alberta that were 
used as part of Exercise (30) and use the same approach to compute 
trend surfaces for the Albertan temperature data and comment on the 
results you obtain. 

Comment/answers

Even with the guidelines provided, Part (7) is quite challenging. The Albertan 
temperature data give a linear trend surface as z = 13.164 - 0.120x - 0.259y, 
with RSS of 73% (equivalent to a correlation coefficient of r=0.85) and F ratio of 
28.6. There is a strong regional trend with values declining to the ‘north east’ 
(larger x and y values). For more detail of this example, see O’Sullivan and 
Unwin (2010, pages 281-287). That there is such a drift in these data should also 
add a note of caution about the assumptions made when interpolating them 
using ordinary kriging.

Fitting a quadratic is easy, simply create extra columns in Microsoft Excel™ for 
the additional terms x*y, x2 and y2 and repeat the analysis with five predictors 
(x, y, x*x, y*y and x*y). Doing this to add the quadratic terms gives an RSS of 
83%, which is probably ‘worth’ the three extra parameters and really only leaves 
a couple of data points badly fitted. There are maybe two notes of caution here. 
First, simply adding terms will always improve the fit, so care needs to be taken 
to ensure that the additions are worthwhile, both by being scientifically sensible 
and statistically significant. Giving a surface too much room for maneuver can 
generate severe edge effects including a marked tendency to create contours 
parallel to the frame used. Similarly, fitting very high order surfaces involves 
creating matrices for which the inverse can be hard to find, resulting in the 
possibility of severe numerical error. 

There is a very basic guide to trend surface analysis, Number 5 in the old 
CATMOG series, now available at http://www.qmrg.org.uk/catmog.

Suggestions for modification

Given that we have only n=24 data points, it might be useful at this point to 
examine some other regression diagnostics, such as the effects of each datum 
on its own fitting (or leverage). Over twenty years ago Neil Wrigley and I showed 
that plots of the leverages against the residuals can be very useful aids in the 
interpretation of polynomial trend surface results Unwin and Wrigley, 1987a, 
1987b)
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6.6 Exercise (33): Spatial structure and spatial interpolation 
by kriging

Aims and introduction

If they can be mapped, and are not just a series of random numbers, fields must 
exhibit spatial autocorrelation that can be characterized by developing a semi-
variogram (SV) model. Using such a model to produce an interpolation by kriging is in 
some sense optimal, because it uses the autocorrelation in the observed data to 
inform the choice both of the range and the weightings to be applied.  Many GIS 
simply compute the SV, summarize it in some standard default way, and then offer a 
limited choice of models to be used in the interpolation. My view is that, although it 
might be acceptable as a means of producing interpolations that look reasonable, this 
approach sweeps under the carpet not only a lot of detail that should not be treated 
in this way, but also hides the utility of a fitted semi-variogram model as a summary 
of the structure of the field.  

Geometry, space and level

As Exercise (29), but introducing the analytical/third order concept of the semi-
variogram.

Intended learning outcomes

After completing this exercise students will:

• Be able to use 3DField to produce an interpolation of a field using a 
suggested model of the SV;

• Understand that different models will produce different maps;
• Have at least some insight into the complexity of the SV modelling process.

Resources needed

Computer running 3DField. The data to be used are in the file topo_data.txt, which 
has (x, y, z) earth surface relief data taken directly from Davis (2003, pages 373) 
made available on the website at 
http://www.kgs.ku.edu/Mathgeo/Books/Stat/index.html as the text file 
NOTREDAM.TXT. To get these into the freeware version of 3DField I have reduced 
their number from the 52 to 50 by deleting two that didn’t seem to help the 
interpolation very much. The height, z, co-ordinates are in the file and are in feet 
above the datum used. The (x, y) are such that one map unit is 50 feet, so the entire 
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area is quite small, around 300 x 300 feet. Students will also need a display showing 
the plot of the experimental SV data (see below).

Suggested student briefing

1. Bring the (x, y, z) data in the file topo_data.txt into 3DFeld (you 
will need to use EDIT>FORMAT SCATTERED DATA and set the X in 
column 1, Y in column 2 and Z in column 3. The objective is to 
create an isoline map (in this case they really are relief ‘contours’) 
using kriging;

2. Using 3DField, produce a simple plot of these point data, without 
attempting any interpolation. This arrives more-or-less 
automatically as you bring in the data. Make sure it makes sense, 
and that you have the data format correct;

3. Revise how we get from this scatter to the following experimental 
semi-variogram shown in Figure 6.3: 

Figure 6.3 Experimental semi-variogram for the topography data

On the y-axis the quantity involved is a measure of spatial dependence, 
the difference in heights squared, plotted against distance apart on the 
x-axis. This was found by first calculating for every one of the 0.5n (n-1) 
possible pairs of (x, y, z) data in the file their distance apart and the 
square of their difference in height. Since we have n=50 points, the 
initial calculation gives 0.5 x 50 x 49 = 1225 pairs of values of:
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The symbol γ  and the ‘2’ are conventionally used for this quantity which 
is called the semi-variance. For example the first two points in the data 
file have (x, y, z) co-ordinates as (0.3, 6.1, 870) and (1.4, 6.2, 793). 
Confirm that these are 1.1045 distance units apart by using Pythagoras 
on the values for x and y and have a semi-variance of 5929 units of 
height squared. A plot of all 1225 of these values is called the variogram 
cloud, which we have then summarized by ‘binning’ these data into the 
ten intervals for which the box plots are as shown. The average value of 
the semi-variance at that distance lag is given by the small horizontal 
bar in each box;

4. So, what these means give is estimates of the semi-variance at a series of 
distances (lags) and step two is to summarize this with a continuous 
mathematical function that describes the way in which the height of the 
field changes with distance.  In other words it expresses, not just 
Toblers’s law, that ‘everything is related to everything else, but near 
things are more related than distant things’ (Tobler 1970), but also gives 
it a precise mathematical form for the field that our spot heights 
represent;

5. Not every mathematical function is suitable to describe these semi-
variances but the choice is usually between the four that 3DField offers 
(linear, spherical, exponential and Gaussian). For your first experiment, 
use the spherical model shown in Figure 6.4 that experience suggests will 
describe many experimental semi-variograms: 
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Figure 6.4 The spherical model for the semi-variogram

(Source: O’Sullivan and Unwin (2003) Figure 9.7)

This has three parameters that describe its shape and that need to be 
supplied to 3DField. The first is the nugget, denoted c0, and is the 
variance at zero distance. At zero distance all z-values should be the same 
and hence their difference should also be zero but this is rare for functions 
based on experimental data.  A non-zero nugget may be thought of as 
indicating that repeated measurements at the same point yield different 
values and so the nugget value is indicative of uncertainty or error in the 
attribute values. Second, there is the range, denoted a, which is the 
distance at which the semi-variogram levels off and beyond which the 
semi-variance is constant and, third the sill is the constant semi-variance 
value beyond the range.  The sill value of a data set may be approximated 
by measuring its total variance. The precise mathematical form of this 
model is:
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for variation up to the range, a, and then
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beyond it;

6.  Next, you need to use the experimental data in step (3) to estimate the 
nugget, and sill variances and the range (feet) for these data. To begin 
with try a nugget of zero (which makes sense, why?), a range of 400 feet 
and sill variance of 6,000 units;

7. Finally, use 3DField to produce the interpolation using 
OBJECTS>GRIDDING METHOD, select KRIGING and under OPTIONS pick 
CUSTOM. Now double click on the map list your chosen map type (SIMPLE 
CONTOURS?), which brings up a screen that allows you to set the kriging 
type (Spherical) and our chosen parameters (nugget c0 =0.0, range, a = 
400 (feet) and sill c1= 6000). On the next screen chose a sensible value 
for the lowest contour to be displayed and the contour interval. Your 
reward should be a fairly ‘good’ map for these data. The mathematics of 
how the estimates are produced from the semi-variogram are outlined in 
O’Sullivan and Unwin (2010, pages 302-310);

170



8. Having got this far, it would be a pity not to experiment with other values 
for the spherical model parameters (do they make much difference?) and 
function used (likewise).

Comment/answers

You might like to look at what others have made of these same data. 
They have been analyzed many times:

a) Their source is the excellent text by Davis (2002, page 373). Davis 
subjects them same data to a variety of isolining procedures, 
reported on pages 374-387 of the same text;

b) In Ripley (1981, pages 58-75) a statistician fits a variety of cleverly-
derived surfaces to these same data, but seems unaware of the 
fact that they represent surface relief.

Figure 6.5 is a possible answer that I quite like from 3DField using spherical model 
kriging with no nugget (no reason for one with topographic heights?), 390 feet 
range. Usually, people find kriging with a spherical model gives decent answers, 
but then so can the much simpler inverse distance weighting (IDW) if one is 
careful to chose the exponent. I confess to a suspicion here that things aren’t 
quite as clear cut as one might imagine from reading the literature, and this is 
because our final interpolator is a weighted sum of the data values in some 
defined neighborhood around the location whose value is being estimated. In 
both kriging and IDW the weights decline with distance to some limit. It may 
well be that almost any function that decreases the data weighting with distance 
from the location and sums to unity will give a ‘reasonable’ result. 
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Figure 6.5 A kriged interpolation using a spherical model

For comparison, Figure 6.6 shows a standard inverse distance interpolation with 
a distance exponent of 2.0.

Figure 6.6 IDW interpolation of the same data with e=2.0 
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For fairly obvious reasons ‘Bull’s eye’ ring contours are a frequent outcome in 
IDW. There are a few in this example. Too many almost always indicate a poor 
quality answer where the method is struggling to honor a single data point.

Figure 6.7 Interpolation in ArcGIS™ using IDW

The same issue is shown in Figure 6.7, which is another using IDW but this time 
using ArcGIS™. Note that we have a lot of ‘ring contours’ that reflect the need to 
honour all the data. We also get some enclosed depressions that, limestone ‘sink 
holes’ excepted, don’t exist in real terrain.

Given that we can produce hundreds of different maps, the temptation is to 
assume that the one that took most computational effort is likely to be the best, 
but this seems questionable. Many people seem content to use standard kriging 
even when there is a clear ‘drift’ in the mean of the data, as there is in this case, 
with a linear trend surface defined as

z= 913.8 – 1.695x – 25.252y

giving quite a good fit with an  RSS of 66%. We should remove the drift, krige the 
residuals and recombine the kriged estimates with the predicted trend values. 
Figure 6.8 is a perspective view from the ‘north’ of a surface produced by a careful 
kriging analysis using a spherical model after first removing the linear drift in the 
mean. Its fault, if fault it be, is the use of a colour ‘ramp from blue to red that isn’t 
what we’d normally expect for the land surface relief (usually green, through 
browns to white?). 

173



Figure 6.8 Perspective view of the surface produced by universal kriging

Suggestions for modification

In an ideal world what is really needed is some user friendly software that takes 
the student through the entire semi-variogram modelling process, starting with 
computation of the cloud, showing the effect of differing binning strategies on its 
summary and then estimating the parameters of any chosen model. Lot’s of 
systems for semi-variogram estimation exist, but to date I have not found one 
that actually meets these desiderata. Most (see http//ai-geostats.org for a 
current list), although good for research, are not designed for teaching and are 
simply too difficult for students to use. Variowin, originally a DOS program 
developed in the 1990s by Pannatier (1996), is awkward to use but there is an 
excellent step by step introduction to its use by Anselin to be found at 
http://geodacenter.asu.edu/system/files/variowin.pdf that could form the basis 
of such an exercise.  Exercise (34) shows what can be done by careful design for 
teaching.
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6.7 Exercise (34): Spatial structure from the semi-variogram 
models

Aims and introduction

Completion of Exercise (33), might lead to the conclusion that there is nothing to 
choose between kriging and IDW interpolation. This exercise uses E(Z)-Kriging, a 
simple piece of software created by Dennis Walvoort of Wageningen (Holland) to 
demonstrate some of the theoretical advantages of using kriging. I find this a 
superb resource for teaching and learning about interpolation by kriging and the 
message students should take from what follows is much the same as that 
elsewhere: the phrase ‘engage brain before clicking mouse in your GIS’ 
summarizes it neatly! The exercise takes the form of a series of simple tests 
using data supplied by the system. 

Geometry, space and level

As Exercise (29), but concentrating on the analytical/third order concept of the 
semi-variogram.

Intended learning outcomes

On completion of this exercise, students will have an intuitive understanding of 
some of the properties of interpolation by kriging:

• The effect of distance on the weights assigned to neighbouring control 
points;

• The ability to ‘mask’ data points;
• The ability to decluster clustered distributions of control;
• The impact of the nugget on the variance of the estimates and thus on 

the certainty of the interpolation values;
• The effect of different models for the semi-variogram.

Resources needed

Computer running E(Z)-kriging.

Suggested student briefing

1. If this has not already been done, download a ZIP file for E(Z)-kriging 
from:

http://www.ai-geostats.org/index.php?id=114
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Unzip it and then run the program. You should also download and 
examine the associated manual, which has suggestions for some 
experiments that you can conduct for yourself using the system;

2. The basic display consists of three panels. On the left is a simplified data 
configuration, showing seven sample points arranged in a circle, which are 
thus at equal distances from the central location, the red dot, whose z-
value is to be estimated. With the basic model all are just inside the 
specified range of the SV model. At the bottom is a data table giving the 
sample values. Note that you can use the mouse to move these points 
around, including the location to be interpolated. You can also change the 
number of points initially in the circle. The central pane allows selection of 
models for the semi-variogram, offering three different functional forms. 
The final panel shows a bar chart of the kriging weights, the predicted 
value and its error variance. There is also a very useful button from which 
to access the matrices used; 

3. Now undertake the following experiments and answer the various 
questions that arise:

Experiment 1

• What is the predicted value at the red dot’s location?
• With the initial spherical model and data configuration, what 

weight is attached to each of the data point (The matrices 
section is the best place to look)?

• Why are these values all the same and on what do they 
depend?

Experiment 2

Now move data point 6 inwards towards the circle center, stopping 
around 50 distance units away. 

• What is the new predicted value and why has it changed? 
• What is the weight now associated with data point 6, and what 

has been the effect on the variance of the interpolated value?
• Why has the pattern of weights on the other data points 

changed, especially that for data point 5?

Experiment  3

Reset the system. Now move data point 5 around the circle 
circumference until it is as close to data point 6 as you can get it. 
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• What is the effect on the predicted value at the red dot location, 
its variance?

• From an inspection of the weights can you say why this has 
happened?

Experiment 4

Reset the system. Retaining the spherical model, use the slider to 
increase the nugget from zero upwards to 30 units. 

• What is the effect on both the prediction and its variance?
• How does this variance change as a function of the assumed 

nugget?

Experiment 5

Finally, reset the system again, but this time fit both Exponential and 
Gaussian models to he same data configuration. 

• What effects do these alternative SV models have on both the 
predicted values and their variances?

• Which model is ‘best’?

Comment/answers

Students should acquire what at least is an informal understanding of the 
properties of various kriging solutions. Because of uncertainties in the exact 
positioning of the points, numerical values won’t quite match these, but should 
be close.

Ex1: 4.33ˆ0 =z  with a variance of 115.0 (i.e. +/- 10.7 units)
iallforwi 143.0= . There are two conditions here. First the distances from the 

red dot are all the same and, second, the points are evenly distributed around 
the circle. You can check that this latter condition is important by moving a point 
and this property distinguishes kriging from IDW. Note also that the weights do 
NOT depend on the data point z-values.

Ex 2: 1.40ˆ0 ≈z  with a slightly reduced variance of ~106.4 (i.e. +/- 10.3 units)
314.0=iw . Data point (5) is being ‘masked’ by (6) so its weight drops to around 

0.090. This masking property is another that differentiates Kriging from IDW
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Ex 3: 5.31ˆ0 ≈z  with variance 116.8.  This illustrates the de-clustering property of 
kriging, yet another improvement on IDW, which would give both points the 
same weight. The weights on (5) and (6) are reduced to around 0.105 (5) and 
0.092(6).

Ex 4: 4.33ˆ0 ≈z  which is the same, but the variance increases t0 149.3 (+/- 
12.2). This reflects the uncertainty that a non-zero nugget introduces.  It is easy 
to show how the prediction variance increases was the nugget is increased to a 
point at which the model is ‘all nugget’.

Ex 5: With the same settings (where appropriate) the exponential model gives 
the same prediction but decrease the variance to 62.6 (+/-7.9) and so might be 
held to be better.  The Gaussian with a variance at 56.9 (+/- 7.5) does even 
better. I guess one might declare the Gaussian the winner. In most applications 
it is the behavior at close range that matters most and it is often the case that 
these models improve on the standard ready-to-run spherical.

Suggestions for modification

Walvoort suggests a series of other things you can investigate, for example:

• The distance effect of points, especially those outside the range, 
making a comparison with inverse distance weighting ‘all or 
nothing’ approach;

• The effects of using differing data values;
• Experimentation with varying block sizes in block kriging is also 

possible if you cover it in a more formal setting.
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Chapter 7: Taking it further

7. 1 Introduction

The instructor who has got this far will no doubt have spotted gaps in the 
coverage of spatial concepts that are offered. A comparison of the content with 
the various concepts listed in Table 1.3 will show that no exercises have been 
included that examine concepts (typically at the analytical/third order level)  such 
as anisotropy/isotropy, network generation models,  enclosure,  hierarchy, 
dominance, spatial interaction, vector fields, and surface networks.  I have no 
doubt that exercises similar in spirit and structure to those provided could readily 
be developed for these concepts and, for that matter, any of the others in what 
might be a long list. 

The internet and WWW have changed almost everything, making it easy to find 
and to share teaching resources of this sort. Indeed one of the more remarkable 
outcomes of the internet times in which we live has been the willingness of 
instructors to share teaching resources. Any list of available materials for 
teaching basic geography would be very long and anyhow rapidly become 
outdated. All that can be offered here are some ‘starters’ that will give some feel 
for what is available.

7.2 General Geography and Geographic Information Science 
projects of relevance

Although it might be assumed that spatial concepts would be addressed by 
instructors working over the entire range of academic geography, in practice 
most concern seems to have been shown by the geographical information 
science community and/or those concerned with computer based learning.  Over 
the years there have been a number of projects concerned to advance teaching 
in the geographical sciences that have developed resources of use in teaching 
and learning spatial concepts. Examples include:

a) In USA Ken Foote’s Geographers Craft and Virtual Geography Department 
materials remain as an example of some very forward looking ideas and can be 
accessed at:

http://www.colorado.edu/geography/gcraft/contents.html

and

http://www.colorado.edu/geography/virtdept/resources/educatio/courses/course
s.htm
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b) Also in USA the original 1990 National Center for Geographic Information and 
Analysis (NCGIA) Core Curriculum in GIS and the materials that were submitted 
in 2000 for what was intended to be an update can be found either at

http://www.ncgia.ucsb.edu/giscc/ (2000 version) or as benchmarked by Brian 
Klinkenberg of the University of British Columbia at: 
http://www.geog.ubc.ca/courses/klink/gis.notes/ncgia/toc.html (1990 version)

Both contain relevant curriculum materials. 

c) In UK during the 1990s a series of discipline-specific projects were centrally 
funded with a variety of pedagogic missions related to developing and/or making 
available resources for teaching in the universities. Of these a few survive or 
have been benchmarked at various websites. Probably the most useful are those 
assembled by the Geography Discipline Network (GDN) at the University of 
Gloucester, see:

http://resources.glos.ac.uk/ceal/gdn/index.cfm and 
http://www2.glos.ac.uk/gdn/index.htm

These materials include the complete text of the book by Gold et al. (1992) 
Teaching Geography in Higher Education, which remains perhaps the most 
comprehensive account of pedagogic issues in the field (see 
http://www2.glos.ac.uk/gdn/gold/index.htm) and to which some exercises in the 
workbook make reference. The same site allows keyword searches of a data 
base of resources at http://www2.glos.ac.uk/gdn/keywords/keywords.htm

d) For the past decade much of the work done by GDN and its predecessors 
have been collected under the umbrella of the (UK) Higher Education Academy 
Subject Centre for Geography, Earth and Environmental Sciences (GEES), see:

http://www.gees.ac.uk/db/search.php

e) Most users of this workbook will be working in institutions that have an 
Environmental Systems Research Institute  Inc (ESRI) site license and thus will 
have access to exercises that illustrate GIS concepts, keyed to sections of 
Longley et al. (2011), see http://training.esri.com/gateway/imdex.cfm

f) Some GIS textbooks list student exercises of the sort included in this workbook 
or have accompanying materials that do the same thing.  Of these the 
instructor’s teaching manuals that accompany Geographic Information Systems 
and Science, the well-known text by Longley, Goodchild, Maguire and Rhind will 
prove a useful source of ideas and projects,  see 
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http://www.wiley.com/college/longley. The teacher’s manual accompanying the 
Third Edition is Singleton, A.D., Unwin, D., and Kemp, K. (2010) Geographic 
Information Systems and Science: Teaching Manual (New York: Wiley) .A second 
text that contains short ‘thought exercises’ to illustrate basic concepts is 
O’Sullivan D and Unwin D J (2010) Geographic Information Analysis (Second 
edition,  Hoboken, NJ, Wiley)

If your interest is primarily in analytical concepts, then there is a very good 
resource available as print or via WWW as:

deSmith, M. Goodchild M.F. and P.A. Longley (2006-2009)
Geospatial Analysis: a Comprehensive Guide to Principles, Techniques and 
Software Tools.  The three editions of this book (published by Troubador, 
Leicester, UK) are hard copy versions of an extensive and detailed technical 
website, http://www.spatialanalysisonline.com.  

g) Intended leaning outcomes

An examination of this workbook will show that drafting and listing intended 
learning outcomes (ILO) appropriate for each of the spatial concepts it illustrates 
is neither trivial nor an activity to be addressed after design of the resource. To 
the contrary it is central to the entire exercise.  Relevant guidance on how to 
write them can be found at:

http://ncgia.ucsb.edu/giscc/units/format/outcomes.html

The 2006 American GIS&T Body of Knowledge is articulated through use of ILO 
and serves as a source for many relevant to spatial concepts:

DiBiase, D. , DeMers, M. , Johnson, A. B. , Kemp, K. K. , Plewe, B. P. and Wentz, 
E. A. (eds.) (2006) The Geographic Information Science and Technology Body of  
Knowledge Association of American Geographers , Washington, DC

7.3 Spatial concepts

Narrowing the focus to projects concerned solely with spatial literacy, there are 
at least three projects that attempt to address spatial literacy and that have 
created resources of use in teaching the associated spatial concepts.

a) Spatial Literacy in Teaching (SPLINT)

Although no longer running, the project that sponsored this workbook has 
websites at each of the collaborating institutions at:
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http://www.le.ac.uk/gg/splint/ (Leicester University)
http://www.spatial-literacy.org (University College London)
http://www.nottingham.ac.uk/splint/ (Nottingham University)

b) Teach Spatial 

The team at University of California, Santa Barbara (UCSB) has a number of 
other relevant, nationally funded projects that can be accessed from 
http://www.spatial.ucsb.edu

These projects include Don Janelle’s Spatial Perspectives on Analysis for  
Curriculum Enhancement (SPACE, see http://www.csiss.org/space), Michael 
Goodchild’s Center for Spatially Integrated Social Science (CSISS, see 
http://www.csiss.org), and the late Reginald Golledge’s Spatial Thinking and they 
have done a great deal to isolate the issues and develop resources that illustrate 
basic spatial concepts. The most recent is teachspatial that has a website at 
http://teachspatial.org with a series of useful papers and resources relating to 
spatial concepts including a series of lessons based on spatial thinking 
contributed by Joseph Kerski and some outlines of concept based spatial thinking 
learning modules from Josh Bader. All are very worth looking at. The same 
website has some useful GIS-based tools that would enable simple exercise to be 
created using standard GI software.

Elsewhere on the website of the UCSB Geography Department will be found 
papers that develop appropriate ideas and theory relating to spatial concepts, 
such as, for example papers submitted by a number of contributors to a 
workshop on spatial concepts in GIS and design held in 2008 at:

http://ncgia.ucsb.edu/projects/scdg/participants-scdg.php

c)  Learning Spatially

Diana Sinton at the University of Redlands (USA) has an interesting project 
(LENS) that uses spatial concepts for learning, see:

http://www.spatial.redlands.edu/lens/about.aspx

The section under ‘learning pathways’ has a number of useful links to data and 
mapping resources of relevance.

7.4 Software used in the Workbook
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In addition to standard software the workbook uses three free-of-charge 
software systems of which two have dedicated websites with their own 
workbooks and related resources.

a) GeoDa™

The first complete version of the GeoDa™ workbook contains 244 pages with 25 
chapters of step by step guidelines and exercises to learn all the features of 
GeoDa™, including spatial regression analysis and can be downloaded from:

http://www.csiss.org/clearinghouse/GeoDa/

or:

http://geodacenter.asu.edu

In addition the second of these sites has a revised version of the same 
workbook, a short teaching demonstration for spatial autocorrelation, an 
introduction to exploratory data analysis using GeoDa™  and an introduction to 
spatial autocorrelation analysis. 

b) CrimeStat III

The website at:

http://www.icpsr.umich.edu/CrimeStat

has both a comprehensive User Manual and Workbook available for download. 
The workbook shows how to prepare data for CrimeStat, produce results and 
import them into ArcGIS™  for further analysis or presentation. It also covers 
entering data into CrimeStat, basic descriptive spatial statistics, measures of 
clustering, several 'Hot Spot' detection techniques, and using both single and 
dual Kernel Density Interpolation. The same site has a link to the US National 
Archive of Criminal Justice Data which could be source of further data if (and 
when) BOOK, BANK and SNOW become too familiar. 

Luc Anselin at http://geodacenter.asu.edu provides a short Introduction to Point 
Pattern Analysis using CrimeStat .

c) 3Dfield

As noted in Chapter 6, 3Dfield  is available from:
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http://field.hypermart.net/

where there is an on-line manual/help facility. The system does not have 
facilities for estimating and modelling semi-variograms but if you are prepared to 
be patient and take things step by step, the freeware version of VarioWin should 
be available from

http://www.sst.unil.ch/research/variowin/index.html or from http://www.ai-
geostats.org which often will form the starting point for a search for anything 
geostatistical.

There is an excellent guide to its use from Luc Anselin An Introduction to 
Variography using Variowin available, once again, from 
http://geodacenter.asu.edu

Doubtless these resources will date quite rapidly, and their web URLs change, 
but use of a search engine will often allow them to be re-discovered.

7.5 Linked Resources: Data Files

The workbook is accompanied by six small data files, all in simple text format:

File Comment

Alta_temperatures.txt Transcribed from paper sources many years ago, see 
O’Sullivan and Unwin (2003) page 222

BANK.txt This is a famous data set that has been analyzed many 
times, notably by the statistician Brian Ripley. These 
data were taken from the website associated with the 
text by Davis (2002).  n = 47

BOOK.txt These are the 12 sample data taken from Table 5.2 
page 131 of O’Sullivan and Unwin (2010) n = 12

SNOW.txt This is probably the most famous point data set ever to 
be analyzed. It consists of the locations of 578 deaths 
from cholera recorded by Dr. John Snow in the Soho 
area of London during an outbreak of cholera in 1854. 
These data were digitized at the request of Professor 
Waldo Tobler (UCSB) by Rusty Dodson of the US 
National Center for Geographic Information Analysis 
from a reprint of Snow’s book On Cholera (Oxford 
University Press, London).

Striae_in_Finland.txt 
(and xls)

Davis (2002, page 317) presents these data for the 
recorded directions of 51 glacial striae in a 35km2 area 
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of southern Finland.  These are recorded as angular 
directions in degrees clockwise from north.

Topo_data.txt This has (x, y, z) earth surface relief data taken directly 
from Davis (2003, page 373) made available on the 
website at 
http://www.kgs.ku.edu/Mathgeo/Books/Stat/index.html 
as the text file NOTREDAM.TXT. Interestingly, John 
Davis tells me that they were originally used by him at 
Notre Dame University to introduce a student exercise 
on contouring. n = 50, reduced by 2 from the original 
to get them into 3Dfield.
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